CH4 hydrate production coupled with CO2 sequestration and hydrate restoration employing depressurization assisted by CO2-N2 injection at marine conditions

被引:20
|
作者
Niu, Mengya [1 ]
Yin, Zhenyuan [1 ]
Sun, Yifei [3 ]
Fang, Wei [1 ]
Chen, Guangjin [3 ]
Chen, Daoyi [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Ocean Engn, Tsinghua Shenzhen Int Grad Sch, Shenzhen 108055, Peoples R China
[2] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[3] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
美国国家科学基金会;
关键词
Marine gas hydrate; Depressurization; CO; 2-N; 2; injection; CH; 4; production; sequestration; Hydrate restoration; NATURAL-GAS HYDRATE; METHANE HYDRATE; THERMAL-STIMULATION; OFFSHORE PRODUCTION; PRODUCTION BEHAVIOR; NANKAI TROUGH; DISSOCIATION; RECOVERY; REPLACEMENT; RESERVOIR;
D O I
10.1016/j.cej.2022.140981
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Natural gas hydrates (NGHs) buried below the seafloor are globally abundant, energy-dense, and essential to the world's future energy mix. The combination of depressurization and CO2-N2 injection processes for NGHs re-covery has been identified as an environmental method to harvest energy, CO2 sequestration, and to maintain the mechanical stability of sediment. In this regime, partial CH4 was produced by depressurization followed by CO2- N2 injection to form CH4-CO2-N2 mixed hydrate (Mix-H). In this study, a series experiments were designed to examine the key factors in the depressurization process (i.e. bottom hole pressure BHP and CH4 production ratio) on the subsequent processes of Mix-H formation, CO2 sequestration and hydrate restoration. It was observed that Mix-H formation occurred in all cases, but the final amount of Mix-H were all lower than the initial amount of MH before depressurization. Particularly, the formation of CO2/N2 hydrate in Mix-H is positively correlated with the amount of remaining CH4 in the combined phases of gas and hydrate after depressurization. The formation of CH4 hydrate in Mix-H during the reformation process occurred in five cases when MH dissociation ratio (DMH) reaches above 45.1 % during depressurization. MH was only observed to dissociate continuously after CO2/N2 injection when DMH is low at 30.8 %, which indicates possible "CH4-CO2 replacement reaction". Overall, increasing CH4 production at the same BHP decreases the CO2 sequestration and hydrate restoration. We first verified the feasibility of the combination method for synergistic CH4 recovery and CO2 sequestration in marine conditions. The experimental results provide possible guidance on the optimal design of the coupled processes and shed light on the relationship between CH4 recovery and CO2 sequestration that need to be wholistically balanced.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media
    Baldwin, Bernard A.
    Stevens, Jim
    Howard, James J.
    Graue, Arne
    Kvamme, Bjorn
    Aspenes, Erick
    Ersland, Geir
    Husebo, Jarle
    Zornes, David R.
    MAGNETIC RESONANCE IMAGING, 2009, 27 (05) : 720 - 726
  • [42] Phase Equilibrium Conditions of Tetrabutyl Ammonium Nitrate + CO2, N2, or CH4 Semiclathrate Hydrate Systems
    Du, Jian-Wei
    Liang, De-Qing
    Li, Dong-Liang
    Chen, Yu-Feng
    Li, Xin-Jun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (20) : 11720 - 11723
  • [43] Impact of water film thickness on kinetic rate of mixed hydrate formation during injection of CO2 into CH4 hydrate
    Baig, Khuram
    Kvamme, Bjorn
    Kuznetsova, Tatiana
    Bauman, Jordan
    AICHE JOURNAL, 2015, 61 (11) : 3944 - 3957
  • [44] Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture
    Wang, Fei
    Fu, Shanfei
    Guo, Gang
    Jia, Zhen-Zhen
    Luo, Sheng-Jun
    Guo, Rong-Bo
    ENERGY, 2016, 104 : 76 - 84
  • [45] Study of CO2 hydrate formation on the surface of residue shell from dissociated CH4 hydrate
    Gui, Xia
    Li, Li
    ENERGY, 2024, 302
  • [46] Sustainability of CO2 replacement processes in marine hydrate reservoirs: Factors causing changes on mechanical properties of Gas-Hydrate after CO2/CH4 exchange
    Trippetta, Fabio
    Gambelli, Alberto Maria
    Minelli, Giorgio
    Castellani, Beatrice
    Rossi, Federico
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 179 : 628 - 639
  • [47] Influence of CO2 injection rate and memory water on depressurization-assisted replacement in natural gas hydrates and the implications for effective CO2 sequestration and CH4 exploitation
    Choi, Wonjung
    Mok, Junghoon
    Lee, Jonghyuk
    Lee, Yohan
    Lee, Jaehyoung
    Seo, Yongwon
    ENERGY, 2024, 309
  • [48] Experimental Study on Hydrate Formation with Synthesized CH4/CO2/N2 Ternary Mixtures
    Zang, Xiaoya
    Liang, Deqing
    ENERGY & FUELS, 2018, 32 (10) : 10745 - 10753
  • [49] Effect of Three Kinds of Graphenes on CO2 and CH4 Hydrate Formation
    Wang, Lanyun
    Yang, Yuan
    Wang, Yan
    Xu, Yongliang
    Li, Yao
    Wei, Jianping
    Feng, Xiaodong
    Zhang, Kun
    ENERGY & FUELS, 2023, 37 (21) : 16660 - 16671
  • [50] The phase-field theory applied to CO2 and CH4 hydrate
    Svandal, A
    Kvamme, B
    Grànàsy, L
    Pusztai, T
    Buanes, T
    Hove, J
    JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) : 486 - 490