Transfer learning based deep learning model and control chart for bearing useful life prediction

被引:7
|
作者
Wang, Fu-Kwun [1 ,3 ]
Gomez, William [1 ]
Amogne, Zemenu Endalamaw [1 ,2 ]
Rahardjo, Benedictus [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei, Taiwan
[2] Bahir Dar Univ, Bahir Dar Inst Technol, Fac Mech & Ind Engn, Bahir Dar, Ethiopia
[3] Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei 106335, Taiwan
关键词
bi-directional long short-term memory with attention; exponentially weighted moving average; predictive maintenance; remaining useful life prediction; HEALTH MANAGEMENT; PROGNOSTICS; DESIGN;
D O I
10.1002/qre.3261
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The remaining useful life (RUL) of the machine is one of the key information for predictive maintenance. If there is a lack of predictive maintenance strategy, it will increase the maintenance and breakdown costs of the machine. We apply transfer learning techniques to develop a new method that predicts the RUL of target data using degradation trends learned from complete bearing test data called source data. The training length of the model plays a crucial role in RUL prediction. First, the exponentially weighted moving average (EWMA) chart is used to identify the abnormal points of the bearing to determine the starting point of the model's training. Secondly, we propose transfer learning based on a bidirectional long and short-term memory with attention mechanism (BiLSTMAM) model to estimate the RUL of the ball bearing. At the same time, the public data set is used to compare the estimation effect of the BiLSTMAM model with some published models. The BiLSTMAM model with the EWMA chart can achieve a score of 0.6702 for 11 target bearings. The accuracy of the RUL estimation ensures a reliable maintenance strategy to reduce unpredictable failures.
引用
收藏
页码:837 / 852
页数:16
相关论文
共 50 条
  • [1] Deep transfer learning in machinery remaining useful life prediction: a systematic review
    Chen, Gaige
    Kong, Xianguang
    Cheng, Han
    Yang, Shengkang
    Wang, Xianzhi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [2] A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
    Chen, Yuanhang
    Peng, Gaoliang
    Zhu, Zhiyu
    Li, Sijue
    APPLIED SOFT COMPUTING, 2020, 86
  • [3] An intelligent hybrid deep learning model for rolling bearing remaining useful life prediction
    Deng, Linfeng
    Li, Wei
    Yan, Xinhui
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [4] Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing
    Dong, Shaojiang
    Xiao, Jiafeng
    Hu, Xiaolin
    Fang, Nengwei
    Liu, Lanhui
    Yao, Jinbao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [5] Transfer learning-based deep learning models for proton exchange membrane fuel remaining useful life prediction
    Kebede, Getnet Awoke
    Lo, Shih-Che
    Wang, Fu-Kwun
    Chou, Jia-Hong
    FUEL, 2024, 367
  • [6] Deep Transfer Learning Remaining Useful Life Prediction of Different Bearings
    Xu, Juan
    Fang, Mengting
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective
    Chen, Jiaxian
    Huang, Ruyi
    Chen, Zhuyun
    Mao, Wentao
    Li, Weihua
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 193
  • [8] Remaining Useful Life Prediction Based on Deep Learning: A Survey
    Wu, Fuhui
    Wu, Qingbo
    Tan, Yusong
    Xu, Xinghua
    SENSORS, 2024, 24 (11)
  • [9] A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model
    Xu, Zifei
    Bashir, Musa
    Liu, Qinsong
    Miao, Zifan
    Wang, Xinyu
    Wang, Jin
    Ekere, Nduka
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 176
  • [10] Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data
    Cheng, Han
    Kong, Xianguang
    Wang, Qibin
    Ma, Hongbo
    Yang, Shengkang
    Xu, Kun
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 236