On value sharing of certain differential polynomials of meromorphic functions and L-functions

被引:1
作者
An, Vu Hoai [1 ]
Khoai, Ha Huy [2 ]
Phuong, Nguyen Duy [3 ]
机构
[1] Hai Duong Univ, Hai Duong, Vietnam
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
[3] Thai Nguyen Univ, Thai Nguyen, Vietnam
关键词
L-function; Uniqueness; Differential polynomial;
D O I
10.1007/s41478-024-00742-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish some relations between a meromorpic function and an L-function in the Selberg class, if some their differential polynomials share the set of roots of unity.
引用
收藏
页码:2485 / 2502
页数:18
相关论文
共 11 条
  • [1] Goldberg A., 2008, Value distribution of meromorphic functions. Translations of Mathematical Monographs
  • [2] Hayman W.K., 1964, MEROMORPHIC FUNCTION
  • [3] Linear independence of L-functions
    Kaczorowski, J
    Molteni, G
    Perelli, A
    [J]. FORUM MATHEMATICUM, 2006, 18 (01) : 1 - 7
  • [4] The second derivative of a meromorphic function of finite order
    Langley, JK
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 97 - 108
  • [5] Results on L-Functions of Certain Differential Polynomials Sharing One Finite Value
    Li, Xiao-Min
    Liu, Fang
    Yi, Hong-Xun
    [J]. FILOMAT, 2019, 33 (18) : 5767 - 5776
  • [6] REMARKS ON VALUE SHARING OF CERTAIN DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC FUNCTIONS
    Li, Xiao-Min
    Yi, Hong-Xun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (03) : 427 - 443
  • [7] Value distribution of L-functions concerning shared values and certain differential polynomials
    Liu, Fang
    Li, Xiao-Min
    Yi, Hong-Xun
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2017, 93 (05) : 41 - 46
  • [8] Steuding J, 2007, LECT NOTES MATH, V1877, pIX
  • [9] Electronic properties of semiconductor nanowires
    Voon, L. C. Lew Yan
    Zhang, Yong
    Lassen, B.
    Willatzen, M.
    Xiong, Qihua
    Eklund, P. C.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (01) : 1 - 26
  • [10] Whittaker JM., 1936, Journal of London Mathematical Society, Vs1-11, P82, DOI [10.1112/jlms/s1-11.2.82, DOI 10.1112/JLMS/S1-11.2.82]