Unveiling Confinement Engineering for Achieving High-Performance Rechargeable Batteries

被引:8
|
作者
Lv, Ruixin [1 ]
Luo, Chong [1 ,2 ]
Liu, Bingran [1 ]
Hu, Kaikai [1 ]
Wang, Ke [1 ]
Zheng, Longhong [1 ]
Guo, Yafei [1 ]
Du, Jiahao [1 ]
Li, Li [1 ,2 ,3 ]
Wu, Feng [1 ,2 ,3 ]
Chen, Renjie [1 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250300, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
batteries; confinement; electrodes; electrolytes; microstructures; LIQUID ELECTROLYTE; IONIC LIQUID; MICROPOROUS CARBON; LITHIUM; SULFUR; GRAPHENE; MOLECULES; CATHODE; STORAGE; SPACE;
D O I
10.1002/adma.202400508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices. This review explores the innovative confinement effect in rechargeable batteries, presenting a promising approach to address key challenges. It delves into categorizing confinement across scales and proposing strategic designs for manipulating physicochemical properties, electrode stability, and ion transfer. The goal is to provide a comprehensive guide for harnessing confinement to develop high-performance batteries. image
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Approaching high-performance potassium-ion batteries via advanced design strategies and engineering
    Zhang, Wenchao
    Liu, Yajie
    Guo, Zaiping
    SCIENCE ADVANCES, 2019, 5 (05)
  • [42] Partially amorphous vanadium oxysulfide for achieving high-performance Li-ion batteries
    Shen, Ao
    Shi, Zhichen
    Zhao, Chunyan
    Zhang, Wenyuan
    Feng, Yongbao
    Gong, Wenbin
    Liu, Chenglong
    Xue, Pan
    Xu, Peng
    Li, Qiulong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 685 : 615 - 625
  • [43] Ferrocene-Derived Sulfur-Rich Cathode for High-Performance Rechargeable Lithium Batteries
    Liu, Rui-Lan
    Lin, Debo
    Wang, Qingxu
    Chen, Yahong
    Wang, Dan-Yang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (23) : 8517 - 8523
  • [44] Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries
    Wang, Xuezhen
    Li, Gaofeng
    Han, Yan
    Wang, Feng
    Chu, Jun
    Cai, Taotao
    Wang, Baoshan
    Song, Zhiping
    CHEMSUSCHEM, 2021, 14 (15) : 3174 - 3181
  • [45] High-Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries: Recent Advances
    Song, Chen-Yu
    Huang, Chen-Jin
    Xu, Hui-Min
    Zhang, Zhi-Jie
    Shuai, Ting-Yu
    Zhan, Qi-Ni
    Li, Gao-Ren
    SMALL, 2024, 20 (43)
  • [46] Challenges and recent progress on anodes and their interfacial optimization towards high-performance rechargeable magnesium batteries
    Chen, Song
    Ma, Heping
    Du, Yibo
    Zhang, Wenming
    Yang, Hui Ying
    MATERIALS TODAY, 2024, 72 : 282 - 300
  • [47] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [48] Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries
    Pan, Baofei
    Huang, Jinhua
    Feng, Zhenxing
    Zeng, Li
    He, Meinan
    Zhang, Lu
    Vaughey, John T.
    Bedzyk, Michael J.
    Fenter, Paul
    Zhang, Zhengcheng
    Burrell, Anthony K.
    Liao, Chen
    ADVANCED ENERGY MATERIALS, 2016, 6 (14)
  • [49] Recent Advances in the Multifunctional Natural Gum-Based Binders for High-Performance Rechargeable Batteries
    Padil, Vinod V. T.
    Cheong, Jun Young
    ENERGIES, 2022, 15 (22)
  • [50] Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries
    Liu, Jia-Ning
    Zhao, Chang-Xin
    Ren, Ding
    Wang, Juan
    Zhang, Rui
    Wang, Shu-Hao
    Zhao, Chuan
    Li, Bo-Quan
    Zhang, Qiang
    ADVANCED MATERIALS, 2022, 34 (11)