Quantile-Mixer: A Novel Deep Learning Approach for Probabilistic Short-Term Load Forecasting

被引:5
|
作者
Ryu, Seunghyoung [1 ,2 ]
Yu, Yonggyun [1 ]
机构
[1] Korea Atom Energy Res Inst, Appl Artificial Intelligence Sect, Daejeon 34057, South Korea
[2] Sejong Univ, Dept Intelligent Mechatron Engn, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; short-term load forecasting; MLP-mixer; probabilistic forecasting; quantile regression; uncertainty; energy AI; ENERGY-STORAGE SYSTEMS; ADAPTIVE DROOP CONTROL; STATE; MICROGRIDS; ARCHITECTURES; BATTERIES; SOC;
D O I
10.1109/TSG.2023.3290180
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the power grid becomes more complex and dynamic, accurate short-term load forecasting (STLF) with probabilistic information is a prerequisite for various smart grid applications. For doing this, various deep learning models have been proposed, and recent models increase model size and complexity to achieve better accuracy which could also increase the burden on model design, computation time, and resources. To this end, we propose a novel deep learning model for accurate and efficient probabilistic STLF (PSTLF). First, we develop an STLF model utilizing the multi-layer perceptron (MLP)-mixer structure, i.e., MLP-mixer for STLF (MM-STLF), that has an advantage in forecasting accuracy and efficiency compared to the other deep learning models. Then, we propose a random quantile regression (RQR) method that takes a cumulative probability tau as an input to the model and is trained on random tau s. By combining MM-STLF and RQR, we develop a novel deep-PSTLF model, namely quantile-mixer (Q-mixer). We evaluate the overall performance of the proposed model with seven load datasets in terms of prediction error, model size, and inference time, respectively. Through experiments, various STLF models and probabilistic forecasting methods are compared, and the experimental results demonstrate the effectiveness of Q-mixer in load forecasting.
引用
收藏
页码:2237 / 2250
页数:14
相关论文
共 50 条
  • [1] Using deep learning for short-term load forecasting
    Bendaoud, Nadjib Mohamed Mehdi
    Farah, Nadir
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18) : 15029 - 15041
  • [2] Using deep learning for short-term load forecasting
    Nadjib Mohamed Mehdi Bendaoud
    Nadir Farah
    Neural Computing and Applications, 2020, 32 : 15029 - 15041
  • [3] A Whole System Assessment of Novel Deep Learning Approach on Short-Term Load Forecasting
    Shi, Heng
    Xu, Minghao
    Ma, Qiuyang
    Zhang, Chi
    Li, Ran
    Li, Furong
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 2791 - 2796
  • [4] A comprehensive review on deep learning approaches for short-term load forecasting
    Eren, Yavuz
    Kucukdemiral, Ibrahim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 189
  • [5] Stacking for Probabilistic Short-Term Load Forecasting
    Dudek, Grzegorz
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 3 - 18
  • [6] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09) : 1094 - 1099
  • [7] Short-Term Load Forecasting Using a Novel Deep Learning Framework
    Zhang, Xiaoyu
    Wang, Rui
    Zhang, Tao
    Liu, Yajie
    Zha, Yabing
    ENERGIES, 2018, 11 (06):
  • [8] Enhancing Short-Term Electric Load Forecasting for Households Using Quantile LSTM and Clustering-Based Probabilistic Approach
    Masood, Zaki
    Gantassi, Rahma
    Choi, Yonghoon
    IEEE ACCESS, 2024, 12 : 77257 - 77268
  • [9] Deep learning with regularized robust long- and short-term memory network for probabilistic short-term load forecasting
    Jiang, He
    Zheng, Weihua
    JOURNAL OF FORECASTING, 2022, 41 (06) : 1201 - 1216
  • [10] Short-term Load Forecasting on Smart Meter via Deep Learning
    Khatri, Ishan
    Dong, Xishuang
    Attia, John
    Qian, Lijun
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,