Cayley graph;
normal Cayley graph;
arctransitive graph;
AUTOMORPHISM-GROUPS;
CLASSIFICATION;
D O I:
10.30495/JME.2023.2621
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a finite group and S be a subset of G such that 1(G) is not an element of. S and S-1 = S. The Cayley graph Sigma = Cay(G, S) on G with respect to S is the graph with the vertex set G such that, for , dagger is an element of G, the pair (, dagger) is an arc in Cay(G, S) if and only if dagger (-1) is an element of S. The graph S is said to be arc-transitive if its full automorphism group Aut(Sigma) is transitive on its arc set. In this paper we give a classification for arc-transitive Cayley graphs with valency six on finite abelian groups which are non-normal. Moreover, we classify all normal Cayley graphs on non-cyclic abelian groups with valency 6.
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
Hubard, Isabel
Ramos-Rivera, Alejandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Primorska, IAM, Muzejski Trg 2, Koper 6000, SloveniaUniv Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
Ramos-Rivera, Alejandra
Sparl, Primoz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Primorska, IAM, Muzejski Trg 2, Koper 6000, Slovenia
Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
IMFM, Ljubljana, SloveniaUniv Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico