Genetically Engineered Cytomembrane Nanovaccines for Cancer Immunotherapy

被引:10
作者
Pan, Yuanwei [1 ,2 ]
Wu, Xianjia [2 ]
Liu, Lujie [2 ]
Zhao, Chenchen [2 ,3 ]
Zhang, Jing [2 ,3 ]
Yang, Shengren [4 ]
Pan, Pan [5 ]
Huang, Qinqin [1 ]
Zhao, Xing-Zhong [3 ]
Tian, Rui [4 ]
Rao, Lang [1 ,2 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 2, Res & Applicat Ctr Precis Med, Zhengzhou 450014, Peoples R China
[2] Shenzhen Bay Lab, Inst Biomed Hlth Technol & Engn, Shenzhen 518132, Peoples R China
[3] Wuhan Univ, Minist Educ, Sch Phys & Technol, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[4] Xiamen Univ, Sch Publ Hlth, Ctr Mol Imaging & Translat Med, State Key Lab Mol Vaccinol & Mol Diagnost, Xiamen 361102, Peoples R China
[5] Jinan Univ, Affiliated Hosp 1, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer immunotherapy; cell membrane vesicles; genetic engineering; immune checkpoints; nanovaccines; T-CELLS; VACCINES;
D O I
10.1002/adhm.202400068
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cancer nanovaccines have attracted widespread attention by inducing potent cytotoxic T cell responses to improve immune checkpoint blockade (ICB) therapy, while the lack of co-stimulatory molecules limits their clinical applications. Here, a genetically engineered cancer cytomembrane nanovaccine is reported that simultaneously overexpresses co-stimulatory molecule CD40L and immune checkpoint inhibitor PD1 to elicit robust antitumor immunity for cancer immunotherapy. The CD40L and tumor antigens inherited from cancer cytomembranes effectively stimulate dendritic cell (DC)-mediated immune activation of cytotoxic T cells, while the PD1 on cancer cytomembranes significantly blocks PD1/PD-L1 signaling pathway, synergistically stimulating antitumor immune responses. Benefiting from the targeting ability of cancer cytomembranes, this nanovaccines formula shows an enhanced lymph node trafficking and retention. Compared with original cancer cytomembranes, this genetically engineered nanovaccine induces twofold DC maturation and shows satisfactory precaution efficacy in a breast tumor mouse model. This genetically engineered cytomembrane nanovaccine offers a simple, safe, and robust strategy by incorporating cytomembrane components and co-stimulatory molecules for enhanced cancer immunotherapy. A novel genetically programmable NVs-based nanovaccines is developed to trigger a stimulated immune response against cancer through a robust combinational regime: promoting the maturation of DC via co-stimulatory molecules CD40L and blocking the PD1/PDL1 pathway. This work offers a simple, safe, and effective nanovaccine design for activating the body's immune responses in cancer immunotherapy. image
引用
收藏
页数:15
相关论文
共 52 条
[1]   Enhanced dendritic cell maturation by TNF-α or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo [J].
Brunner, C ;
Seiderer, J ;
Schlamp, A ;
Bidlingmaier, M ;
Eigler, A ;
Haimerl, W ;
Lehr, HA ;
Krieg, AM ;
Hartmann, G ;
Endres, S .
JOURNAL OF IMMUNOLOGY, 2000, 165 (11) :6278-6286
[2]   CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies [J].
Bullock, Timothy N. J. .
CELLULAR & MOLECULAR IMMUNOLOGY, 2022, 19 (01) :14-22
[3]   Clinical implications of T cell exhaustion for cancer immunotherapy [J].
Chow, Andrew ;
Perica, Karlo ;
Klebanoff, Christopher A. ;
Wolchok, Jedd D. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (12) :775-790
[4]   Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators [J].
Conniot, Joao ;
Scomparin, Anna ;
Peres, Carina ;
Yeini, Eilam ;
Pozzi, Sabina ;
Matos, Ana, I ;
Kleiner, Ron ;
Moura, Liane I. F. ;
Zupancic, Eva ;
Viana, Ana S. ;
Doron, Hila ;
Gois, Pedro M. P. ;
Erez, Neta ;
Jung, Steffen ;
Satchi-Fainaro, Ronit ;
Florindo, Helena F. .
NATURE NANOTECHNOLOGY, 2019, 14 (09) :891-+
[5]   Targeting co-stimulatory molecules in autoimmune disease [J].
Edner, Natalie M. ;
Carlesso, Gianluca ;
Rush, James S. ;
Walker, Lucy S. K. .
NATURE REVIEWS DRUG DISCOVERY, 2020, 19 (12) :860-883
[6]   Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery [J].
Fang, Ronnie H. ;
Hu, Che-Ming J. ;
Luk, Brian T. ;
Gao, Weiwei ;
Copp, Jonathan A. ;
Tai, Yiyin ;
O'Connor, Derek E. ;
Zhang, Liangfang .
NANO LETTERS, 2014, 14 (04) :2181-2188
[7]   Engineered Cell Membrane Vesicles Expressing CD40 Alleviate System Lupus Nephritis by Intervening B Cell Activation [J].
Fang, Tianliang ;
Li, Baoqi ;
Li, Meng ;
Zhang, Yuli ;
Jing, Zhangyan ;
Li, Yuan ;
Xue, Tianyuan ;
Zhang, Zhirang ;
Fang, Wenli ;
Lin, Zhongda ;
Meng, Fanqiang ;
Li, Liyan ;
Yang, Yang ;
Zhang, Xingding ;
Liang, Xin ;
Chen, Shu-Na ;
Chen, Jun ;
Zhang, Xudong .
SMALL METHODS, 2023, 7 (03)
[8]   Towards personalized, tumour-specific, therapeutic vaccines for cancer [J].
Hu, Zhuting ;
Ott, Patrick A. ;
Wu, Catherine J. .
NATURE REVIEWS IMMUNOLOGY, 2018, 18 (03) :168-182
[9]   Enhancing cancer immunotherapy with nanomedicine [J].
Irvine, Darrell J. ;
Dane, Eric L. .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (05) :321-334
[10]   Considerations for designing preclinical cancer immune nanomedicine studies [J].
Jiang, Wen ;
Wang, Yifan ;
Wargo, Jennifer A. ;
Lang, Frederick F. ;
Kim, Betty Y. S. .
NATURE NANOTECHNOLOGY, 2021, 16 (01) :6-15