Interacting topological quantum chemistry of Mott atomic limits

被引:6
|
作者
Soldini, Martina O. [1 ]
Astrakhantsev, Nikita [1 ]
Iraola, Mikel [2 ,3 ]
Tiwari, Apoorv [4 ]
Fischer, Mark H. [1 ]
Valenti, Roser [5 ]
Vergniory, Maia G. [2 ,6 ]
Wagner, Glenn [1 ]
Neupert, Titus [1 ]
机构
[1] Univ Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Donostia Int Phys Ctr, San Sebastian 20018, Spain
[3] Univ Basque Country UPV EHU, Dept Phys, Bilbao 48080, Spain
[4] KTH Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, S-11421 Stockholm, Sweden
[5] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[6] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
基金
瑞典研究理事会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
BAND REPRESENTATIONS; INSULATOR; TRANSITION; VALENCE;
D O I
10.1103/PhysRevB.107.245145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respective crystal lattice, or it is topological. For interacting systems, there is no single-particle band structure and hence, the TQC machinery grinds to a halt. We develop a framework analogous to TQC, but employing n-particle Green's function to classify interacting systems. Fundamentally, we define a class of interacting reference states that generalize the notion of atomic limits, which we call Mott atomic limits, and are symmetry protected topological states. Our formalism allows to fully classify these reference states (with n = 2), which can themselves represent symmetry protected topological states. We present a comprehensive classification of such states in one dimension and provide numerical results on model systems. With this, we establish Mott atomic limit states as a generalization of the atomic limits to interacting systems.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Quantum Quench of an Atomic Mott Insulator
    Chen, David
    White, Matthew
    Borries, Cecilia
    DeMarco, Brian
    PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [2] Topological Mott insulator at quarter filling in the interacting Haldane model
    Mai, Peizhi
    Feldman, Benjamin E.
    Phillips, Philip W.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [3] Topological quantum chemistry
    Barry Bradlyn
    L. Elcoro
    Jennifer Cano
    M. G. Vergniory
    Zhijun Wang
    C. Felser
    M. I. Aroyo
    B. Andrei Bernevig
    Nature, 2017, 547 : 298 - 305
  • [4] Topological quantum chemistry
    Bradlyn, Barry
    Elcoro, L.
    Cano, Jennifer
    Vergniory, M. G.
    Wang, Zhijun
    Felser, C.
    Aroyo, M. I. .
    Bernevig, B. Andrei
    NATURE, 2017, 547 (7663) : 298 - 305
  • [5] Connecting topological Anderson and Mott insulators in disordered interacting fermionic systems
    Zhang, Guo-Qing
    Tang, Ling-Zhi
    Zhang, Ling-Feng
    Zhang, Dan-Wei
    Zhu, Shi-Liang
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [6] Interacting topological phases and quantum anomalies
    Ryu, Shinsei
    PHYSICA SCRIPTA, 2015, T164
  • [7] Magnetic topological quantum chemistry
    Luis Elcoro
    Benjamin J. Wieder
    Zhida Song
    Yuanfeng Xu
    Barry Bradlyn
    B. Andrei Bernevig
    Nature Communications, 12
  • [8] Magnetic topological quantum chemistry
    Elcoro, Luis
    Wieder, Benjamin J.
    Song, Zhida
    Xu, Yuanfeng
    Bradlyn, Barry
    Bernevig, B. Andrei
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Topological quantum critical points in strong coupling limits: Global symmetries and strongly interacting Majorana fermions
    Zhou, Fei
    PHYSICAL REVIEW B, 2022, 105 (01)
  • [10] Observation of topological transitions in interacting quantum circuits
    P. Roushan
    C. Neill
    Yu Chen
    M. Kolodrubetz
    C. Quintana
    N. Leung
    M. Fang
    R. Barends
    B. Campbell
    Z. Chen
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    J. Kelly
    A. Megrant
    J. Mutus
    P. J. J. O’Malley
    D. Sank
    A. Vainsencher
    J. Wenner
    T. White
    A. Polkovnikov
    A. N. Cleland
    J. M. Martinis
    Nature, 2014, 515 : 241 - 244