Multi-omics analysis reveals the associations between altered gut microbiota, metabolites, and cytokines during pregnancy

被引:6
|
作者
Huang, Ting [1 ]
Liang, Xinyuan [1 ,2 ]
Bao, Han [1 ]
Ma, Guangyu [1 ]
Tang, Xiaomei [1 ]
Luo, Huijuan [1 ]
Xiao, Xiaomin [1 ]
机构
[1] Jinan Univ, Dept Obstet & Gynecol, Affiliated Hosp 1, Guangzhou, Peoples R China
[2] Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Obstet, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
pregnancy; gut microbiota; metabolism; cytokines; 16S rRNA; BILE-ACIDS; IMMUNE-SYSTEM; INFLAMMATION; MODULATION; DYNAMICS; STRAINS; OBESITY; HEALTH; ROLES; BLOOD;
D O I
10.1128/msystems.01252-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
For embryo implantation and fetal development, the maternal immune system undergoes dramatic changes. The mechanisms involved in inducing alterations of maternal immunity have not been fully clarified. Gut microbiome and metabolites were thought to influence the host immune response. During normal pregnancy, notable changes occur in the gut microbiota and metabolites. However, the relationship of these alterations to immune function during pregnancy remains unclear. In this study, we examined gut microbiota, fecal metabolites, plasma metabolites, and cytokines in pregnant women and non-pregnant women. Our findings revealed that, in comparison to non-pregnant women, pregnant women exhibit a significant increase in the relative abundance of Actinobacteriota and notable differences in metabolic pathways related to bile acid secretion. Furthermore, there was a marked reduction in pro-inflammatory cytokines levels in pregnant women. Correlation analyses indicated that these alterations in cytokines may be linked to specific gut bacteria and metabolites. Bacteria within the same microbial modules exhibited consistent effects on cytokines, suggesting that gut bacteria may function as functional groups. Mediation analysis further identified that certain bacteria might influence cytokines through metabolites, such as bile acids and arachidonic acid. Our findings propose potential biological connections between bacteria, metabolites, and immunity, which require further validation in future studies.IMPORTANCEA great number of studies have focused on diseases induced by intestinal microecological disorders and immune imbalances. However, the understanding of how intestinal microbiota interacts with immunity during normal pregnancy, which is fundamental to studying pathological pregnancies related to intestinal microbiota disturbances, has not been well elucidated. Our study employed multi-omics analysis to discover that changes in gut microbiota and metabolites during pregnancy can impact immune function. In addition, we identified several metabolites that may mediate the effect of gut microbes on plasma cytokines. Our study offered new insights into our understanding of the connections between the gut microbiome, metabolome, and the immune system during pregnancy. A great number of studies have focused on diseases induced by intestinal microecological disorders and immune imbalances. However, the understanding of how intestinal microbiota interacts with immunity during normal pregnancy, which is fundamental to studying pathological pregnancies related to intestinal microbiota disturbances, has not been well elucidated. Our study employed multi-omics analysis to discover that changes in gut microbiota and metabolites during pregnancy can impact immune function. In addition, we identified several metabolites that may mediate the effect of gut microbes on plasma cytokines. Our study offered new insights into our understanding of the connections between the gut microbiome, metabolome, and the immune system during pregnancy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-omics study unravels gut microbiota and metabolites alteration in patients with Wilson's disease
    Cai, Xiangsheng
    Dai, Jincheng
    Xie, Yingjun
    Xu, Shu
    Liu, Minqi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] Gut microbiota and plasma metabolites in pregnant mothers and infant atopic dermatitis: A multi-omics study
    Du, Bingqian
    Shama, Aga
    Zhang, Yi
    Chen, Baolan
    Bu, Yongqi
    Chen, Pei-an
    Lin, Chuzhi
    Liu, Jie
    Zheng, Juan
    Li, Zhenjun
    Chen, Qingsong
    Sun, Yu
    Fu, Xi
    WORLD ALLERGY ORGANIZATION JOURNAL, 2025, 18 (01):
  • [23] Associations between the Gut Microbiota, Urinary Metabolites, and Diet in Women during the Third Trimester of Pregnancy
    Haddad, Eliot N.
    Nel, Nikita H.
    Petrick, Lauren M.
    Kerver, Jean M.
    Comstock, Sarah S.
    CURRENT DEVELOPMENTS IN NUTRITION, 2023, 7 (04):
  • [24] Multi-Omics Analysis Reveals Disturbance of Nanosecond Pulsed Electric Field in the Serum Metabolic Spectrum and Gut Microbiota
    Dong, Yeping
    Lu, Jiahua
    Wang, Ting
    Huang, Zhiliang
    Chen, Xinhua
    Ren, Zhigang
    Hong, Liangjie
    Wang, Haiyu
    Yang, Dezhi
    Xie, Haiyang
    Zhang, Wu
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [25] Integrated Multi-Omics Data Analysis Reveals Associations Between Glycosylation and Stemness in Hepatocellular Carcinoma
    Liu, Peiyan
    Zhou, Qi
    Li, Jia
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [26] Alternation of gut microbiota in metabolically healthy obesity: An integrated multi-omics analysis
    Zhou, Xiaoying
    Chen, Han
    Zhang, Guoxin
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2023, 38 : 39 - 40
  • [27] Alternation of gut microbiota in metabolically healthy obesity: An integrated multi-omics analysis
    Zhou, Xiaoying
    Chen, Han
    Zhang, Guoxin
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2023, 38 : 39 - 40
  • [28] Multi-omics reveals host metabolism associated with the gut microbiota composition in mice with dietary ε-polylysine
    Zhang, Xuelei
    Hou, Zhenping
    Tian, Xu
    Wu, Duanqin
    Dai, Qiuzhong
    FOOD & FUNCTION, 2022, 13 (07) : 4069 - 4085
  • [29] Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies
    Daliri, Eric Banan-Mwine
    Ofosu, Fred Kwame
    Chelliah, Ramachandran
    Lee, Byong H.
    Oh, Deog-Hwan
    BIOMOLECULES, 2021, 11 (02) : 1 - 10
  • [30] Multi-omics analysis reveals metabolism of okadaic acid in gut lumen of rat
    Liu, Yang
    Lu, Yang
    Jiao, Yu-Hu
    Li, Da-Wei
    Li, Hong-Ye
    Yang, Wei-Dong
    ARCHIVES OF TOXICOLOGY, 2022, 96 (03) : 831 - 843