Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage

被引:24
|
作者
Zhang, Pengfei [1 ]
Wang, Yilin [1 ]
Qiu, Yu [1 ]
Yan, Hongjie [1 ]
Wang, Zhaolong [2 ]
Li, Qing [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Interdisciplinary Res Ctr Low carbon Technol & Equ, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Oriented carbon fiber; Composite phase change material; Anisotropic thermal conductivity; Solar -to -thermal efficiency; GRAPHENE AEROGEL; CONDUCTIVITY; PERFORMANCE; FOAM; NANOTUBES; FRAMEWORK;
D O I
10.1016/j.apenergy.2023.122546
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Phase change materials (PCMs) have aroused significant interest as promising materials for solar thermal energy conversion and storage. However, the long-standing shortcomings of liquid leakage, low thermal conductivity, and weak solar absorptance limit their practical applications. Herein, novel composite phase change materials (CPCMs) with anisotropic heat conduction are manufactured by mixing continuous carbon fibers (CFs) and palmitic acid (PA)/olefin block copolymer (OBC) mixtures using pressure induction and vacuum treatment. Because the oriented CFs in the vertical direction can offer heat transfer channels inside the composites, the vertical and horizontal thermal conductivities of the CPCMs are 5.84 W & sdot;K- 1 & sdot;m- 1 and 1.34 W & sdot;K- 1 & sdot;m- 1, respectively, resulting in a relatively high anisotropic degree of 4.36. Furthermore, to improve the absorption of solar radiation for the composite, carbon black is applied to the upper surface of the CPCMs, achieving a high total solar absorptance of 0.966. Due to the combination of the high solar absorptance of the carbon black and the high vertical thermal conductivity within the composites, the CPCMs exhibit outstanding solar-to-thermal efficiencies of 87.54% - 95.08% at 1- 3 kW & sdot;m- 2. In addition, stability testing also confirms that the CPCMs have excellent leakage-proof properties, thermal stability, and cyclic stability for long-term utilization. This work can provide an efficient route to synthesize high-performance CPCMs for solar thermal applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Novel and durable composite phase change thermal energy storage materials with controllable melting temperature
    Wei, Haiting
    Yang, Shuiyuan
    Wang, Cuiping
    Qiu, Changrui
    Lin, Kairui
    Han, Jiajia
    Lu, Yong
    Liu, Xingjun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 86 : 11 - 19
  • [42] Solar thermal energy storage and heat pumps with phase change materials
    Kapsalis, V.
    Karamanis, D.
    APPLIED THERMAL ENGINEERING, 2016, 99 : 1212 - 1224
  • [43] Thermal Enhancement of Solar Energy Storage Using Phase Change Materials
    Darwesh, Bahzad Darwesh
    Hamakhan, Idres Azzat
    Yaqob, Banipal Nanno
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (03) : 758 - 766
  • [44] A Review of Phase Change Materials as an Alternative for Solar Thermal Energy Storage
    Wani, Chandrakant
    Loharkar, Praveen Kumar
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (09) : 10264 - 10267
  • [45] Paraffin/Palygorskite composite phase change materials for thermal energy storage
    Yang, Dan
    Shi, Silan
    Xiong, Lian
    Guo, Haijun
    Zhang, Hairong
    Chen, Xuefang
    Wang, Can
    Chen, Xinde
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 228 - 234
  • [46] Solar thermal conversion and thermal energy storage of CuO/Paraffin phase change composites
    Chen, Meijie
    He, Yurong
    Ye, Qin
    Zhang, Zhenduo
    Hu, Yanwei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 130 : 1133 - 1140
  • [47] Evaluation of carbonized cotton stalk for development of novel form stable composite phase change materials for solar thermal energy storage
    Gowthami, D.
    Sharma, R. K.
    Ansu, A. K.
    Sari, A.
    Tyagi, V. V.
    Rathore, P. K. S.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 188 : 1037 - 1048
  • [48] A study on preparation and properties of carbon materials/myristic acid composite phase change thermal energy storage materials
    He, Meizhi
    Yang, Luwei
    Zhang, Zhentao
    Yang, Junling
    PHASE TRANSITIONS, 2019, 92 (07) : 615 - 633
  • [49] Biomass Homogeneity Reinforced Carbon Aerogels Derived Functional Phase-Change Materials for Solar-Thermal Energy Conversion and Storage
    Zhang, Qingfeng
    Xia, Tingfeng
    Zhang, Qihan
    Zhu, Yucao
    Zhang, Huanzhi
    Xu, Fen
    Sun, Lixian
    Wang, Xiaodong
    Xia, Yongpeng
    Lin, Xiangcheng
    Peng, Hongliang
    Huang, Pengru
    Zou, Yongjin
    Chu, Hailiang
    Li, Bin
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [50] Development of a novel sulphoalumitate cement-based composite combing fine steel fibers and phase change materials for thermal energy storage
    Sang, Guochen
    Cao, Yanzhou
    Fan, Min
    Lu, Geyang
    Zhu, Yiyun
    Zhao, Qin
    Cui, Xiaoling
    ENERGY AND BUILDINGS, 2019, 183 : 75 - 85