Applicability Analysis of Three Atmospheric Radiative Transfer Models in Nighttime

被引:0
|
作者
He, Jiacheng [1 ,2 ]
Zhang, Wenhao [1 ,2 ]
Liu, Sijia [1 ,2 ]
Zhang, Lili [3 ]
Liu, Qiyue [1 ,2 ]
Gu, Xingfa [1 ,3 ]
Yu, Tao [1 ,3 ]
机构
[1] North China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
[2] Hebei Collaborat Innovat Ctr Aerosp Remote Sensing, Langfang 065000, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
radiative transfer model; SCIATRAN; MODTRAN; 6SV; VIIRS/DNB; nighttime; VICARIOUS CALIBRATION; PERFORMANCE; STABILITY; AEROSOL;
D O I
10.3390/atmos15010126
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The relatively stable lunar illumination may be used to realize radiometric calibration under low light. However, there is still an insufficient understanding of the accuracy of models and the influence of parameters when conducting research on low-light radiometric calibration. Therefore, this study explores the applicability of three atmospheric radiative transfer models under different nighttime conditions. The simulation accuracies of three nighttime atmospheric radiative transfer models (Night-SCIATRAN, Night-MODTRAN, and Night-6SV) were evaluated using the visible-infrared imaging radiometer suite day/night band (VIIRS/DNB) data. The results indicate that Night-MODTRAN has the highest simulation accuracy under DNB. The consistency between simulated top-of-atmosphere (TOA) radiance and DNB radiance is approximately 3.1%, and uncertainty is 2.5%. This study used Night-MODTRAN for parameter sensitivity analysis. The results indicate that for the lunar phase angle, aerosol optical depth, surface reflectance, lunar zenith angle, satellite zenith angle, and relative azimuth angle, the average change rates are 68%, 100%, 2561%, 75%, 20%, and 0%. This paper can help better understand the performance of models under different atmospheric and geographical conditions, as well as whether existing models can simulate the complex processes of atmospheric radiation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)
    Vicent, Jorge
    Verrelst, Jochem
    Sabater, Neus
    Alonso, Luis
    Pablo Rivera-Caicedo, Juan
    Martino, Luca
    Munoz-Mari, Jordi
    Moreno, Jose
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (04) : 1945 - 1957
  • [2] PERORMANCE EVALUATION OF RADIATIVE TRANSFER MODELS OF SATELLITE ATMOSPHERIC MICROWAVE SOUNDING FOR DATA ASSIMILATION
    Li, Gongwei
    Chen, Ke
    Gasiewski, Albin J.
    Zhang, Kun
    Li, Qingxia
    Zhang, Li
    He, Ye
    Cao, Anjie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2189 - 2192
  • [3] Benchmark results in vector atmospheric radiative transfer
    Kokhanovsky, Alexander A.
    Budak, Vladimir P.
    Cornet, Celine
    Duan, Minzheng
    Emde, Claudia
    Katsev, Iosif L.
    Klyukov, Dmitriy A.
    Korkin, Sergey V.
    C-Labonnote, L.
    Mayer, Bernhard
    Min, Qilong
    Nakajima, Teruyuki
    Ota, Yoshifumi
    Prikhach, Alexander S.
    Rozanov, Vladimir V.
    Yokota, Tatsuya
    Zege, Eleonora P.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (12-13) : 1931 - 1946
  • [4] ALG: A TOOLBOX FOR THE GENERATION OF LOOK-UP TABLES BASED ON ATMOSPHERIC RADIATIVE TRANSFER MODELS
    Vicent, Jorge
    Sabater, Neus
    Alonso, Luis
    Verrelst, Jochem
    Moreno, J.
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [5] MULTIOUTPUT AUTOMATIC EMULATOR FOR RADIATIVE TRANSFER MODELS
    Heestermans Svendsen, Daniel
    Martino, Luca
    Vicent, Jorge
    Camps-Valls, Gustau
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4019 - 4022
  • [6] MODTRAN4 radiative transfer modeling for atmospheric correction
    Berk, A
    Anderson, GP
    Bernstein, LS
    Acharya, PK
    Dothe, H
    Matthew, MW
    Adler-Golden, SM
    Chetwynd, JH
    Richtsmeier, SC
    Pukall, B
    Allred, CL
    Jeong, LS
    Hoke, ML
    OPTICAL SPECTROSCOPIC TECHNIQUES AND INSTRUMENTATION FOR ATMOSPHERIC AND SPACE RESEARCH III, 1999, 3756 : 348 - 353
  • [7] Assessment of longwave radiative effect of nighttime cirrus based on CloudSat and CALIPSO measurements and single-column radiative transfer simulations
    Yu, Lu
    Fu, Yunfei
    Yang, Yuanjian
    Li, Rui
    Qiu, Xuexing
    Cai, Hongke
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 221 : 87 - 97
  • [8] Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis
    Verrelst, Jochem
    Sabater, Neus
    Pablo Rivera, Juan
    Munoz-Mari, Jordi
    Vicent, Jorge
    Camps-Valls, Gustau
    Moreno, Jose
    REMOTE SENSING, 2016, 8 (08)
  • [9] Intercomparison of Shortwave Radiative Transfer Models for a Rayleigh Atmosphere
    Yoo, Jung-Moon
    Jeong, Myeong-Jae
    Lee, Kyu-Tae
    Kim, Jhoon
    Ho, Chang-Hoi
    Ahn, Myoung-Hwan
    Hur, Young Min
    Rhee, Ju-Eun
    Yoo, Hye-Lim
    Chung, Chu-Yong
    Shin, In-Chul
    Choi, Yong-Sang
    Kim, Young-Mi
    Lee, Yun-Gon
    Lee, Jae-Hwa
    Yoon, Jong-Min
    Lee, Won-Hak
    JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY, 2007, 28 (03): : 298 - 310
  • [10] Intercomparison of millimeter-wave radiative transfer models
    Kim, MJ
    Skofronick-Jackson, GM
    Weinman, JA
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (09): : 1882 - 1890