Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning

被引:23
|
作者
He, Wenbin [1 ]
Liu, Ting [1 ]
Ming, Wuyi [1 ,2 ]
Li, Zongze [1 ]
Du, Jinguang [1 ]
Li, Xiaoke [1 ]
Guo, Xudong [1 ]
Sun, Peiyan [1 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou 450002, Peoples R China
[2] Guangdong HUST Ind Technol Res Inst, Guangdong Prov Key Lab Digital Mfg Equipment, Dongguan 523808, Peoples R China
关键词
Hydrogen fuel cell; Remaining useful life; Deep learning; Data-driven; Prediction; Review; CONVOLUTIONAL NEURAL-NETWORK; DEGRADATION PREDICTION; FAULT-DIAGNOSIS; PROGNOSTIC METHOD; POWER-GENERATION; MEMBRANE; MODEL; PEMFC; SYSTEMS; STATE;
D O I
10.1016/j.rser.2023.114193
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrogen fuel cells are promising power sources that directly transform the chemical energy produced by the chemical reaction of hydrogen and oxygen into electrical energy. However, the life of fuel cells is the main factor restricting their large-scale commercialization; therefore, it is crucial to predict their remaining useful life (RUL). In recent years, deep learning methods for RUL prediction has shown promising research prospects. Deep learning methods can improve the accuracy and robustness of predictions. In this study, the RUL prediction of hydrogen fuel cells based on deep learning methods was systematically reviewed, and various methods were compared. First, the characteristics and applications of different types of fuel cells were reviewed, and the benefits and drawbacks of three RUL prediction methods were compared. Second, different deep learning methods used to predict fuel cell RUL, such as convolutional neural networks (CNN), recurrent neural networks (RNN), Transformer, other algorithms, and fusion algorithms, were systematically reviewed, and the performance and characteristics of different algorithms were analyzed. Finally, the aforementioned research was discussed, and future development trends were prospected.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction Based on Deep Learning: A Survey
    Wu, Fuhui
    Wu, Qingbo
    Tan, Yusong
    Xu, Xinghua
    SENSORS, 2024, 24 (11)
  • [2] Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction of Turbofan Engine
    Muneer, Amgad
    Taib, Shakirah Mohd
    Fati, Suliman Mohamed
    Alhussian, Hitham
    SYMMETRY-BASEL, 2021, 13 (10):
  • [3] Similarity-based deep learning approach for remaining useful life prediction
    Hou, Mengru
    Pi, Dechang
    Li, Bingrong
    MEASUREMENT, 2020, 159
  • [4] Remaining useful life prediction with insufficient degradation data based on deep learning approach
    Lyu, Yi
    Jiang, Yijie
    Zhang, Qichen
    Chen, Ci
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (04): : 745 - 756
  • [5] Remaining Useful Battery Life Prediction for UAVs based on Machine Learning
    Mansouri, Sina Sharif
    Karvelis, Petros
    Georgoulas, George
    Nikolakopoulos, George
    IFAC PAPERSONLINE, 2017, 50 (01): : 4727 - 4732
  • [6] Remaining Useful Life Prediction using Deep Learning Approaches: A Review
    Wang, Youdao
    Zhao, Yifan
    Addepalli, Sri
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES (TESCONF 2019), 2020, 49 : 81 - 88
  • [7] Transfer learning-based deep learning models for proton exchange membrane fuel remaining useful life prediction
    Kebede, Getnet Awoke
    Lo, Shih-Che
    Wang, Fu-Kwun
    Chou, Jia-Hong
    FUEL, 2024, 367
  • [8] A non-stationary transformer-based remaining useful life prediction method for proton exchange membrane fuel cells
    Fu, Shengxiang
    Zhang, Dongfang
    Xiao, Yao
    Zheng, Chunhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 1121 - 1133
  • [9] Deep Learning Approaches to Remaining Useful Life Prediction: A Survey
    Cummins, Logan
    Killen, Brad
    Thomas, Kirby
    Barrett, Paul
    Rahimi, Shahram
    Seale, Maria
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [10] Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing
    Sun, Chuang
    Ma, Meng
    Zhao, Zhibin
    Tian, Shaohua
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) : 2416 - 2425