A review of the origin, adverse influence and modification method of residual surface lithium in Ni-rich cathodes

被引:9
作者
Yu, Hongwang [1 ,2 ]
Pei, Dong [1 ]
机构
[1] Tianjin Lantian Solar Tech Co Ltd, Tianjin 300019, Peoples R China
[2] Tianjin Lantian Solar Tech Co Ltd, 6 Huake 7th Rd Hitech Ind Pk, Tianjin 300019, Peoples R China
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2024年 / 19卷 / 01期
关键词
Ni-rich layered oxides; LiNixCoyMn1-x-yO2; Cathode materials; Residual lithium compounds; Electrochemical characteristics; Modification methods; POSITIVE ELECTRODE MATERIALS; LAYERED OXIDE CATHODES; ELECTROCHEMICAL PROPERTIES; AMBIENT STORAGE; LINI0.8CO0.1MN0.1O2; DEGRADATION; MECHANISM; MIGRATION; CAPACITY; DISSOLUTION;
D O I
10.1016/j.ijoes.2023.100391
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ni-rich layered oxides LiNixCoyMn1-x-yO2 (x >= 0.6), with a high capacity and energy density, are considered to be the primary cathode materials for next-generation lithium-ion batteries (LIBs). However, its high air sensitivity and residual lithium compounds on the surface limit practical applications. Under the influence of water and CO2, Ni-rich layered oxides are prone to the formation of residual lithium compounds, such as LiOH and Li2CO3, on the surface, which is one of the dominant reasons for the phase change and electrochemical degradation. More seriously, residual lithium deteriorates the coating properties of electrode slurry, increases cell polarization during cycling, and produces different gases, leading to the degradation of battery performance and safety. This review briefly introduces the formation mechanism of residual lithium compounds and discusses the negative influence of residual lithium on the electrochemical characteristics of LiNixCoyMn1-x-yO2 (x >= 0.6) cathodes. Furthermore, the modification methods, such as washing, secondary calcination and coatings, as well as the design of concentration gradient materials to eliminate the adversarial effects of residual lithium compounds are introduced in detail.
引用
收藏
页数:10
相关论文
共 106 条
[1]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[2]   A non-aqueous sodium hexafluorophosphate-based electrolyte degradation study: Formation and mitigation of hydrofluoric acid [J].
Barnes, Pete ;
Smith, Kassiopeia ;
Parrish, Riley ;
Jones, Chris ;
Skinner, Paige ;
Storch, Erik ;
White, Quinn ;
Deng, Changjian ;
Karsann, Devan ;
Lau, Miu Lun ;
Dumais, Joseph J. ;
Dufek, Eric J. ;
Xiong, Hui .
JOURNAL OF POWER SOURCES, 2020, 447
[3]   Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles [J].
Besli, Muenir M. ;
Shukla, Alpesh Khushalchand ;
Wei, Chenxi ;
Metzger, Michael ;
Alvarado, Judith ;
Boell, Julian ;
Nordlund, Dennis ;
Schneider, Gerhard ;
Hellstrom, Sondra ;
Johnston, Christina ;
Christensen, Jake ;
Doeff, Marca M. ;
Liu, Yijin ;
Kuppan, Saravanan .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (20) :12593-12603
[4]   Excellent high-rate cyclic performance of LiNi0.8Co0.1Mn0.1O2 cathodes via dual Li2SiO3/PPy coating [J].
Cao, Gang ;
Zhang, Maolin ;
Zhang, Lejun ;
Wang, Yuan ;
Yan, Yangxi ;
Li, Zhimin ;
Sun, Xiaofei ;
Zhang, Dongyan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
[5]   The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries [J].
Chen, Zhiqiang ;
Wang, Jing ;
Huang, Jingxin ;
Fu, Tao ;
Sun, Guiyan ;
Lai, Shaobo ;
Zhou, Rong ;
Li, Kun ;
Zhao, Jinbao .
JOURNAL OF POWER SOURCES, 2017, 363 :168-176
[6]   Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues [J].
Chi, Zhexi ;
Li, Jian ;
Wang, Lihua ;
Li, Tengfei ;
Wang, Ya ;
Zhang, Yunyun ;
Tao, Shengdong ;
Zhang, Minchao ;
Xiao, Yihua ;
Chen, Yongzhi .
GREEN CHEMISTRY, 2021, 23 (22) :9099-9108
[7]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[8]   Enhancing the air stability of LiNi0.6Co0.2Mn0.2O2 cathode through WO3/ Li2WO4 surface modification [J].
Chu, Binbin ;
Li, Guangxin ;
You, Longzhen ;
Huang, Tao ;
Liu, Mengmeng ;
Yu, Aishui .
JOURNAL OF POWER SOURCES, 2021, 514
[9]   Synthesis, size reduction, and delithiation of carbonate-free nanocrystalline lithium nickel oxide [J].
Dearden, Craig ;
Zhu, Minghui ;
Wang, Beibei ;
Castro, Ricardo H. R. .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (04) :1740-1745
[10]   Origin of Structural Degradation During Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials [J].
Dixit, Mudit ;
Markovsky, Boris ;
Schipper, Florian ;
Aurbach, Doron ;
Major, Dan T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (41) :22628-22636