A topology for P-systems with active membranes

被引:1
作者
Dennunzio, Alberto [1 ]
Formenti, Enrico [2 ]
Manzoni, Luca [3 ]
Margara, Luciano [4 ]
Menara, Giuliamaria [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, Viale Sarca 336, I-20126 Milan, Italy
[2] Univ Cote Azur, CNRS, I3S, Nice, France
[3] Univ Trieste, Dipartimento Matemat & Informat, Via Alfonso Valerio 12-1, I-34100 Trieste, Italy
[4] Univ Bologna, Dept Comp Sci & Engn DISI, Via Sacchi 3, Cesena, Italy
关键词
Membrane computing; P systems; Discrete time dynamical systems; Topological spaces; CELLULAR-AUTOMATA; DYNAMICAL BEHAVIOR; COMPLEXITY;
D O I
10.1007/s41965-023-00132-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a study of deterministic P systems with active membranes in the context of discrete time dynamical systems. First of all, we prove that, for a fixed set of objects and labels, the set of all P system configuration is countable and that the dynamical behaviors defining a chaotic system are not possible. Then, we define a notion of distance between membrane configurations encoding the intuitive concept of "dissimilarity" between configurations. We prove that all functions defined by evolution, communication, and division rules are continuous under that distance and that the resulting topological space is discrete but not complete. Furthermore, we adapt in a natural way the classical notions of sensitivity to initial conditions and topological transitivity to P systems, and we show that P systems exhibiting those new properties exist. Finally, we prove that the proposed distance is efficiently computable, i.e., its computation only requires polynomial time with respect to the size of the input configurations.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 34 条
  • [1] ON DEVANEY DEFINITION OF CHAOS
    BANKS, J
    BROOKS, J
    CAIRNS, G
    DAVIS, G
    STACEY, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) : 332 - 334
  • [2] Beaur P., 2020, LIPICS, V170, P12
  • [3] On the dynamical behavior of chaotic cellular automata
    Cattaneo, G
    Formenti, E
    Margara, L
    Mauri, G
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) : 31 - 51
  • [4] Cattaneo G., 1997, P LECT NOTES COMPUTE, V1295, P179
  • [5] Transitive cellular automata are sensitive
    Codenotti, B
    Margara, L
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (01) : 58 - 62
  • [6] An efficient algorithm deciding chaos for linear cellular automata over (Z/mZ)n with applications to data encryption
    Dennunzio, Alberto
    Formenti, Enrico
    Margara, Luciano
    [J]. INFORMATION SCIENCES, 2024, 657
  • [7] An Easy to Check Characterization of Positive Expansivity for Additive Cellular Automata Over a Finite Abelian Group
    Dennunzio, Alberto
    Formenti, Enrico
    Margara, Luciano
    [J]. IEEE ACCESS, 2023, 11 : 121246 - 121255
  • [8] An efficiently computable characterization of stability and instability for linear cellular automata
    Dennunzio, Alberto
    Formenti, Enrico
    Grinberg, Darij
    Margara, Luciano
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2021, 122 : 63 - 71
  • [9] Decidable characterizations of dynamical properties for additive cellular automata over a finite abelian group with applications to data encryption
    Dennunzio, Alberto
    Formenti, Enrico
    Grinberg, Darij
    Margara, Luciano
    [J]. INFORMATION SCIENCES, 2021, 563 : 183 - 195
  • [10] Chaos and ergodicity are decidable for linear cellular automata over (Z/mZ)n
    Dennunzio, Alberto
    Formenti, Enrico
    Grinberg, Darij
    Margara, Luciano
    [J]. INFORMATION SCIENCES, 2020, 539 : 136 - 144