NONLOCAL PROBLEM FOR A SECOND ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATION WITH DEGENERATE KERNEL AND REAL PARAMETERS

被引:1
|
作者
Yuldashev, Tursun K. [1 ]
Artykova, Zhyldyz A. [2 ]
Alladustov, Shukhrat U. [3 ]
机构
[1] Tashkent State Univ Econ, 49,Karimov St, Tashkent 100066, Uzbekistan
[2] Osh State Univ, 331 Lenin St, Osh 714000, Kyrgyzstan
[3] Curtin Univ, GPO POB U1987, Perth, WA 6845, Australia
关键词
integro-differential equation; nonlocal problem; degenerate kernel; solvability; regular and irregular values of parameters; BOUNDARY-VALUE PROBLEM; SPECTRAL PARAMETER; EIGENFUNCTIONS;
D O I
10.30546/2409-4994.2023.49.2.228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The questions of solvability and construction of solutions of a homogeneous nonlocal boundary value problem for a second-order homogeneous Fredholm integro-differential equation with a degenerate kernel and two real parameters are considered. The degenerate kernel method was developed. The features that have arisen in the construction of solutions and are associated with the determination of the integration coefficients are studied. The values of the parameters are calculated for which the solvability of the boundary value problem is established and the corresponding solutions are constructed.
引用
收藏
页码:228 / 242
页数:15
相关论文
共 50 条
  • [41] A DOUBLE INVERSE PROBLEM FOR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION OF ELLIPTIC TYPE
    Yuldashev, T. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (02): : 39 - 49
  • [42] On solvability of boundary value problem for a nonlinear Fredholm integro-differential equation
    Assanova, A. T.
    Zhumatov, S. S.
    Mynbayeva, S. T.
    Karakenova, S. G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 25 - 34
  • [43] A SOLUTION TO A NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Assanova, Anar T.
    Karakenova, Sayakhat G.
    Mynbayeva, Sandugash T.
    Uteshova, Rosa E.
    QUAESTIONES MATHEMATICAE, 2024, 47 (01) : 61 - 73
  • [44] On a nonlinear integro-differential equation of Fredholm type
    Bounaya, Mohammed Charif
    Lemita, Samir
    Ghiat, Mourad
    Aissaoui, Mohamed Zine
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 13 (02) : 194 - 205
  • [45] A Monotone Type Second-Order Numerical Method for Volterra-Fredholm Integro-Differential Equation
    Amirali, I.
    Fedakar, B.
    Amiraliyev, G. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2025, 65 (01) : 25 - 34
  • [46] A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation
    Chen, Jian
    Huang, Yong
    Rong, Haiwu
    Wu, Tingting
    Zeng, Taishan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 633 - 640
  • [47] Integro-differential equation with Cauchy kernel
    Badr, AA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) : 191 - 199
  • [48] Inverse Boundary-Value Problem for an Integro-Differential Boussinesq-Type Equation with Degenerate Kernel
    Yuldashev T.K.
    Journal of Mathematical Sciences, 2020, 250 (5) : 847 - 858
  • [49] Analysis of a Fractional-Order Quadratic Functional Integro-Differential Equation with Nonlocal Fractional-Order Integro-Differential Condition
    El-Sayed, Ahmed M. A.
    Alhamali, Antisar A. A.
    Hamdallah, Eman M. A.
    AXIOMS, 2023, 12 (08)