Field-informed Reinforcement Learning of Collective Tasks with Graph Neural Networks

被引:3
|
作者
Aguzzi, Gianluca [1 ]
Viroli, Mirko [1 ]
Esterle, Lukas [2 ]
机构
[1] Univ Bologna, Alma Mater Studiorum, Cesena, Italy
[2] Aarhus Univ, Aarhus, Denmark
来源
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS, ACSOS | 2023年
关键词
Aggregate Computing; Graph Neural Networks; Cyber-Physical Swarms; Many Agent Reinforcement Learning; GO;
D O I
10.1109/ACSOS58161.2023.00021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coordinating a multi-agent system of intelligent situated agents is a traditional research problem, impacted by the challenges posed by the very notion of distributed intelligence. These problems arise from agents acquiring information locally, sharing their knowledge, and acting accordingly in their environment to achieve a common, global goal. These issues are even more evident in large-scale collective adaptive systems, where agent interactions are necessarily proximity-based, thus making the emergence of controlled global collective behaviour harder. In this context, two main approaches have been proposed for creating distributed controllers out of macro-level task/goal descriptions: manual design, in which programmers build the controllers directly, and automatic design, which involves synthesizing programs using machine learning methods. In this paper, we consider a new hybrid approach called Field-Informed reinforcement learning (FIRL). We utilise manually designed computational fields (globally distributed data structures) to manage global agent coordination. Then, using Deep Q-learning in combination with Graph Neural Networks we enable the agents to learn the necessary local behaviour automatically to solve collective tasks, relying on those fields through local perception. We demonstrate the effectiveness of this new approach in simulated use cases where tracking and covering tasks for swarm robotics are successfully solved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [21] On the Expressivity of Neural Networks for Deep Reinforcement Learning
    Dong, Kefan
    Luo, Yuping
    Yu, Tianhe
    Finn, Chelsea
    Ma, Tengyu
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [22] reinforcement learning, autonomous agents, neural networks
    Parker-Holder, Jack
    Rajan, Raghu
    Song, Xingyou
    Biedenkapp, Andre
    Miao, Yingjie
    Eimer, Theresa
    Zhang, Baohe
    Nguyen, Vu
    Calandra, Roberto
    Faust, Aleksandra
    Hutter, Frank
    Lindauer, Marius
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 517 - 568
  • [23] Adaptive dependency learning graph neural networks
    Sriramulu, Abishek
    Fourrier, Nicolas
    Bergmeir, Christoph
    INFORMATION SCIENCES, 2023, 625 : 700 - 714
  • [24] Learning Ice Accretion with Graph Neural Networks
    Shumilin, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 2887 - 2892
  • [25] GNES: Learning to Explain Graph Neural Networks
    Gao, Yuyang
    Sun, Tong
    Bhatt, Rishab
    Yu, Dazhou
    Hong, Sungsoo
    Zhao, Liang
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 131 - 140
  • [26] Adaptive Transfer Learning on Graph Neural Networks
    Han, Xueting
    Huang, Zhenhuan
    An, Bang
    Bai, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 565 - 574
  • [27] Physics-informed and graph neural networks for enhanced inverse analysis
    Di Lorenzo, Daniele
    Champaney, Victor
    Ghnatios, Chady
    Cueto, Elias
    Chinesta, Francisco
    ENGINEERING COMPUTATIONS, 2024,
  • [28] GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks
    Song, Weihao
    Dong, Yushun
    Liu, Ninghao
    Li, Jundong
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1625 - 1634
  • [29] Designing an adaptive learning framework for predicting drug-target affinity using reinforcement learning and graph neural networks
    Ma, Jun
    Zhao, Zhili
    Liu, Yunwu
    Li, Tongfeng
    Zhang, Ruisheng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [30] Robust Restoration of IP Traffic from Optical Failures by Deep Reinforcement Learning and Graph Neural Networks
    Bekri, Malek
    Reyes, Ronald Romero
    Bauschert, Thomas
    2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024, 2024,