SHARP POINTWISE-IN-TIME ERROR ESTIMATE OF L1 SCHEME FOR NONLINEAR SUBDIFFUSION EQUATIONS

被引:11
作者
Li, Dongfang [1 ,2 ]
Qin, Hongyu [3 ,4 ]
Zhang, Jiwei [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
[3] Wuhan Inst Technol, Sch Math & Phys, Wuhan 430205, Peoples R China
[4] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2024年 / 42卷 / 03期
基金
中国国家自然科学基金;
关键词
Sharp pointwise-in-time error estimate; L1; scheme; Nonlinear subdiffusion equations; Non-smooth solutions; DIFFERENTIAL-EQUATIONS; CONVOLUTION QUADRATURE; FRACTIONAL DIFFUSION; L1-GALERKIN FEMS; GRADED MESHES;
D O I
10.4208/jcm.2205-m2021-0316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An essential feature of the subdiffusion equations with the alpha-order time fractional derivative is the weak singularity at the initial time. The weak regularity of the solution is usually characterized by a regularity parameter sigma is an element of (0, 1) boolean OR (1, 2). Under this general regularity assumption, we present a rigorous analysis for the truncation errors and develop a new tool to obtain the stability results, i.e., a refined discrete fractional-type Gro center dot nwall inequality (DFGI). After that, we obtain the pointwise-in-time error estimate of the widely used L1 scheme for nonlinear subdiffusion equations. The present results fill the gap on some interesting convergence results of L1 scheme on sigma is an element of (0, alpha) boolean OR (alpha, 1) boolean OR (1, 2]. Numerical experiments are provided to demonstrate the effectiveness of our theoretical analysis.
引用
收藏
页码:662 / 678
页数:17
相关论文
共 30 条
[1]   NUMERICAL APPROXIMATION OF SEMILINEAR SUBDIFFUSION EQUATIONS WITH NONSMOOTH INITIAL DATA [J].
Al-Maskari, Mariam ;
Karaa, Samir .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) :1524-1544
[2]   IMPLICIT-EXPLICIT DIFFERENCE SCHEMES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONSMOOTH SOLUTIONS [J].
Cao, Wanrong ;
Zeng, Fanhai ;
Zhang, Zhongqiang ;
Karniadakis, George Em .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A3070-A3093
[3]   Sharp error estimate of a Grunwald-Letnikov scheme for reaction-subdiffusion equations [J].
Chen, Hu ;
Shi, Yanhua ;
Zhang, Jiwei ;
Zhao, Yanmin .
NUMERICAL ALGORITHMS, 2022, 89 (04) :1465-1477
[4]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143
[5]   Fractional reaction-diffusion [J].
Henry, BI ;
Wearne, SL .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) :448-455
[6]   Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 :332-358
[7]   NUMERICAL ANALYSIS OF NONLINEAR SUBDIFFUSION EQUATIONS [J].
Jin, Bangti ;
Li, Buyang ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) :1-23
[8]   CORRECTION OF HIGH-ORDER BDF CONVOLUTION QUADRATURE FOR FRACTIONAL EVOLUTION EQUATIONS [J].
Jin, Bangti ;
Li, Buyang ;
Zhou, Zhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) :A3129-A3152
[9]   AN ANALYSIS OF GALERKIN PROPER ORTHOGONAL DECOMPOSITION FOR SUBDIFFUSION [J].
Jin, Bangti ;
Zhou, Zhi .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01) :89-113
[10]   TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) :A146-A170