Bochner Laplacian and Bergman kernel expansion of semipositive line bundles on a Riemann surface

被引:2
作者
Marinescu, George [1 ,2 ]
Savale, Nikhil [1 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Romanian Acad, Inst Math Sim Stoilow, Bucharest, Romania
关键词
53C17; 58J50; 32A25; 53D50; DIFFERENTIAL-OPERATORS; ASYMPTOTICS; METRICS; ENERGY;
D O I
10.1007/s00208-023-02750-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the results of Montgomery (Commun Math Phys 168:651-675, 1995) for the Bochner Laplacian on high tensor powers of a line bundle. When specialized to Riemann surfaces, this leads to the Bergman kernel expansion for semipositive line bundles whose curvature vanishes at finite order. The proof exploits the relation of the Bochner Laplacian on tensor powers with the sub-Riemannian (sR) Laplacian.
引用
收藏
页码:4083 / 4124
页数:42
相关论文
共 39 条