Gene-by-environment (GxE) interactions, in which a genetic variant's phenotypic effect is condition specific, are fundamental for understanding fitness landscapes and evolution but have been difficult to identify at the single-nucleotide level. Although many condition-specific quantitative trait loci (QTLs) have been mapped, these typically contain numerous inconsequential variants in linkage, precluding understanding of the causal GxE variants. Here, we introduce BARcoded Cas9 retron precise parallel editing via homology (CRISPEYBAR), a high-throughput precision genome editing strategy, and use it to map GxE interactions of naturally occurring genetic polymorphisms impacting yeast growth. We identified hundreds of GxE variants within condition-specific QTLs, revealing unexpected genetic complexity. Moreover, we found that 93.7% of non-neutral natural variants within ergosterol biosynthesis pathway genes showed GxE interactions, including many impacting antifungal drug resistance through diverse molecular mechanisms. In sum, our results suggest an extremely complex, context-dependent fitness landscape characterized by pervasive GxE interactions while also demonstrating massively parallel genome editing as an effective means for investigating this complexity.