Machine-learning prediction of the formation of atomic gold wires by mechanically controlled break junctions

被引:0
|
作者
Ghosh, Aishwaryo [1 ]
Pabi, Biswajit [1 ]
Pal, Atindra Nath [1 ]
Saha-Dasgupta, Tanusri [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, JD Block,Sect 3, Kolkata 700106, India
关键词
MOLECULAR-DYNAMICS; SPIN; RECOGNITION; CONDUCTANCE; EFFICIENCY; BEHAVIOR;
D O I
10.1039/d3nr04301k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the challenging issues in the formation of atomic wires in break-junction experiments is the formation of stable monoatomic chains of reasonable length. To address this issue, in this study, we present a combination of unsupervised and supervised machine learning models trained on the experimentally measured conductance traces, with a goal to develop a microscopic understanding. Applying a machine learning model to two independent data sets from two different samples containing 72 000 and 90 000 conductance-displacement traces of single-atomic junctions, respectively, we first obtain the optimum conditions of bias and the stretching rate for the formation of chains of length > 4 angstrom. A deep learning method is subsequently applied for the classification of individual breaking traces, leading to the identification of trace features related to long-chain formation. Further investigation by ab initio molecular dynamics simulations provides a molecular-level understanding of the problem.
引用
收藏
页码:17045 / 17054
页数:10
相关论文
共 50 条
  • [21] Predictions for the formation of atomic chains in mechanically controllable break-junction experiments
    Fernandez-Seivane, Lucas
    Garcia-Suarez, Victor M.
    Ferrer, Jaime
    PHYSICAL REVIEW B, 2007, 75 (07):
  • [22] Machine-Learning Based TCP Security Action Prediction
    Zhao, Quanling
    Sun, Jiawei
    Ren, Hongjia
    Sun, Guodong
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1325 - 1329
  • [23] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [24] Machine-Learning Prediction of Underwater Shock Loading on Structures
    Zhang, Mou
    Drikakis, Dimitris
    Li, Lei
    Yan, Xiu
    COMPUTATION, 2019, 7 (04)
  • [25] An investigation on machine-learning models for the prediction of cyanobacteria growth
    Giere, Johannes
    Riley, Derek
    Nowling, R. J.
    McComack, Joshua
    Sander, Hedda
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2020, 194 (02) : 85 - 94
  • [26] Machine-Learning Applications in Structural Response Prediction: A Review
    Afshar, Aref
    Nouri, Gholamreza
    Ghazvineh, Shahin
    Hosseini Lavassani, Seyed Hossein
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2024, 29 (03)
  • [27] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026
  • [28] Machine-learning techniques for the prediction of protein–protein interactions
    Debasree Sarkar
    Sudipto Saha
    Journal of Biosciences, 2019, 44
  • [29] Machine-learning models for prediction of sepsis patients mortality
    Bao, C.
    Deng, F.
    Zhao, S.
    MEDICINA INTENSIVA, 2023, 47 (06) : 315 - 325
  • [30] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301