Strong Duality and Solution Existence Under Minimal Assumptions in Conic Linear Programming

被引:2
|
作者
Luan, Nguyen Ngoc [1 ]
Yen, Nguyen Dong [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math & Informat, 136 Xuan Thuy, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam
关键词
Infinite-dimensional conic linear program; Dual pair; Compatible topology in the dual space; Strong duality; Solution existence; Generalized Slater condition; Quasi-regularity of convex sets; FARKAS LEMMA;
D O I
10.1007/s10957-023-02318-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Conic linear programs in locally convex Hausdorff topological vector spaces are addressed in this paper. Solution existence for the dual problem, as well as solution existence for the primal problem, and strong duality, are proved under minimal regularity assumptions. Namely, to get the results and a Farkas-type theorem for infinite-dimensional conic linear inequalities, we employ the generalized Slater condition either for the primal problem or for the dual problem, as well as proper separation and the concept of quasi-regularity of convex sets. Illustrative examples are presented.
引用
收藏
页码:1083 / 1102
页数:20
相关论文
共 50 条
  • [21] Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions
    Pileckas, K.
    Ciegis, R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [22] Existence of nonstationary Poiseuille-type solutions under minimal regularity assumptions
    K. Pileckas
    R. Čiegis
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [23] COVARIANCE ESTIMATION FOR LINEAR TIME-SERIES UNDER MINIMAL ASSUMPTIONS
    EICKER, F
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04): : 1842 - &
  • [24] A stable primal–dual approach for linear programming under nondegeneracy assumptions
    Maria Gonzalez-Lima
    Hua Wei
    Henry Wolkowicz
    Computational Optimization and Applications, 2009, 44 : 213 - 247
  • [25] Duality relations for second-order programming problem under (G, αf)-bonvexity assumptions
    Dubey, Ramu
    Mishra, Vishnu Narayan
    Tomar, Puneet
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (02)
  • [26] Robust linear semi-infinite programming duality under uncertainty
    M. A. Goberna
    V. Jeyakumar
    G. Li
    M. A. López
    Mathematical Programming, 2013, 139 : 185 - 203
  • [27] Robust linear semi-infinite programming duality under uncertainty
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Lopez, M. A.
    MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 185 - 203
  • [28] Existence of solutions to principal-agent problems with adverse selection under minimal assumptions
    Carlier, Guillaume
    Zhang, Kelvin Shuangjian
    JOURNAL OF MATHEMATICAL ECONOMICS, 2020, 88 : 64 - 71
  • [29] EXISTENCE OF 1D VECTORIAL ABSOLUTE MINIMISERS IN L∞ UNDER MINIMAL ASSUMPTIONS
    Abugirda, Hussien
    Katzourakis, Nikos
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (06) : 2567 - 2575
  • [30] A geometric characterization of strong duality in nonconvex quadratic programming with linear and nonconvex quadratic constraints
    Flores-Bazan, Fabian
    Carcamo, Gabriel
    MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 263 - 290