Higher order Kirillov--Reshetikhin modules for q (A n (1)), imaginary modules and monoidal categorification

被引:0
作者
Brito, Matheus [1 ]
Chari, Vyjayanthi [2 ]
机构
[1] UFPR, Dept Matemat, BR-81530015 Curitiba, PR, Brazil
[2] Univ Calif Riverside, Dept Math, 900 Univ Ave, Riverside, CA 92521 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2023年 / 2023卷 / 804期
基金
美国国家科学基金会;
关键词
FINITE-DIMENSIONAL REPRESENTATIONS; Q-CHARACTERS; CLUSTER ALGEBRAS; QUANTUM;
D O I
10.1515/crelle-2023-0068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the family of irreducible modules for quantum affine sl(n+1) whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polyno-mials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated to A(m) with m <= n. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category C -. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov-Reshetikhin module with its dual always contains an imaginary module in its Jordan-H & ouml;lder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc, A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 5, 1113-1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. M & iacute;nguez, Geometric conditions for -irreducibility of certain representations of the general linear group over a non-archimedean local field, Adv. Math. 339 (2018), 113-190]. Finally, we use our methods to give a family of imaginary modules in type D-4 which do not arise from an embedding of A(r) with r <= 3 in D-4.
引用
收藏
页码:221 / 262
页数:42
相关论文
共 32 条
  • [1] Finite-dimensional representations of quantum affine algebras
    Akasaka, T
    Kashiwara, M
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (05) : 839 - 867
  • [2] [Anonymous], 1987, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR
  • [3] Brito M., 2022, J INDIAN I SCI, V102, P1001
  • [4] TENSOR PRODUCTS AND q-CHARACTERS OF HL-MODULES AND MONOIDAL CATEGORIFICATIONS
    Brito, Matheus
    Chari, Vyjayanthi
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2019, 6 : 581 - 619
  • [5] Spectral characters of finite-dimensional representations of affine algebras
    Chari, V
    Moura, AA
    [J]. JOURNAL OF ALGEBRA, 2004, 279 (02) : 820 - 839
  • [6] QUANTUM AFFINE ALGEBRAS
    CHARI, V
    PRESSLEY, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) : 261 - 283
  • [7] Chari V, 2002, INT MATH RES NOTICES, V2002, P357
  • [8] Chari V., 1995, GUIDE QUANTUM GROUPS
  • [9] Chari Vyjayanthi, 2001, Representation Theory, V5, P191, DOI [10.1090/S1088-4165-01-00115-7, DOI 10.1090/S1088-4165-01-00115-7]
  • [10] The R-matrix for non-twisted affine quantum algebras
    Damiani, I
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (04): : 493 - 523