Optimal regularity for supercritical parabolic obstacle problems

被引:1
|
作者
Ros-Oton, Xavier [1 ,2 ,3 ,4 ]
Torres-Latorre, Clara [2 ]
机构
[1] ICREA, Barcelona, Spain
[2] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
[3] Ctr Recerca Matemat, Barcelona, Spain
[4] Univ Barcelona, Ctr Recerca Matemat, ICREA, Barcelona, Spain
基金
欧洲研究理事会;
关键词
FREE-BOUNDARY; FRACTIONAL LAPLACIAN; SINGULAR SET; EQUATIONS;
D O I
10.1002/cpa.22166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the obstacle problem for parabolic operators of the type partial derivative(t) + L, where L is an elliptic integro- differential operator of order 2s, such as (-Delta)(s), in the supercritical regime s is an element of (0, 1/2). The best result in this context was due to Caffarelli and Figalli, who established the C-x(1,s) regularity of solutions for the case L = (-Delta)(s), the same regularity as in the elliptic setting. Here we prove for the first time that solutions are actually more regular than in the elliptic case. More precisely, we show that they are C-1,C-1 in space and time, and that this is optimal. We also deduce the C-1,C-alpha regularity of the free boundary. Moreover, at all free boundary points (x(0), t(0)), we establish the following expansion: (u - phi)(x(0) +x,t(0) +t) = c(0)(t -a center dot x)(+)(2)+O(t(2+alpha) + |x|(2+alpha)), with c(0) > 0,alpha > 0 and a is an element of R-n.
引用
收藏
页码:1724 / 1765
页数:42
相关论文
共 50 条
  • [41] Regularity in the obstacle problem for parabolic non-divergence operators of Hormander type
    Frentz, Marie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (10) : 3638 - 3677
  • [42] Besov Regularity Estimates for a Class of Obstacle Problems with Variable Exponents
    Ma, Rumeng
    Yao, Fengping
    ACTA APPLICANDAE MATHEMATICAE, 2025, 196 (01)
  • [43] Regularity results for a class of non-differentiable obstacle problems
    Eleuteri, Michela
    di Napoli, Antonia Passarelli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [44] Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems
    J. A. Carrillo
    M. G. Delgadino
    A. Mellet
    Communications in Mathematical Physics, 2016, 343 : 747 - 781
  • [45] Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems
    Carrillo, J. A.
    Delgadino, M. G.
    Mellet, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) : 747 - 781
  • [46] Regularity results for solutions to elliptic obstacle problems in limit cases
    Farroni, Fernando
    Manzo, Gianluigi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [47] DISCRETE MAXIMAL PARABOLIC REGULARITY FOR GALERKIN FINITE ELEMENT METHODS FOR NONAUTONOMOUS PARABOLIC PROBLEMS
    Leykekhman, Dmitriy
    Vexler, Boris
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2178 - 2202
  • [48] Optimal regularity for the thin obstacle problem with C0,α coefficients
    Ruland, Angkana
    Shi, Wenhui
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
  • [49] HOLDER REGULARITY RESULTS FOR PARABOLIC NONLOCAL DOUBLE PHASE PROBLEMS
    Giacomoni, Jacques
    Kumar, Deepak
    Sreenadh, K.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (11-12) : 899 - 950
  • [50] A local regularity result for Neumann parabolic problems with nonsmooth data
    Martinez, A.
    Munoz-Sola, R.
    Vazquez-Mendez, M. E.
    Alvarez-Vazquez, L. J.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 494 - 515