Investigation of Buckling Knockdown Factors for Pressurized Metallic Cylinders Using Various Numerical Modeling Techniques of Initial Imperfections

被引:5
作者
Sim, Chang-Hoon [1 ]
Kim, Do-Young [2 ]
Jeon, Min-Hyeok [1 ]
Park, Jae-Sang [1 ]
Kim, In-Gul [1 ]
Yoo, Joon-Tae [3 ]
Yoon, Young-Ha [3 ]
Lee, Keejoo [3 ]
机构
[1] Chungnam Natl Univ, Daejeon 34134, South Korea
[2] Korea Aerosp Ind, Sacheon 52529, South Korea
[3] Korea Aerosp Res Inst, Daejeon 34133, South Korea
基金
新加坡国家研究基金会;
关键词
Launch vehicle; Propellant tank; Buckling knockdown factor; Internal pressure; Initial imperfection; Postbuckling analysis; CYLINDRICAL-SHELLS; AXIAL-COMPRESSION; STIFFENED SHELLS; DESIGN; DERIVATIONS; SPACE;
D O I
10.1007/s42405-023-00667-4
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Nonlinear postbuckling analyses are conducted to investigate the buckling KnockDown Factors (KDF) for pressurized metallic cylinders. The nonlinear analysis code, ABAQUS, is used to the postbuckling analyses. Various numerical modeling techniques are used to represent the initial imperfections of a cylinder. Measured Geometric Imperfection (MGI) and Single (or Multiple) Perturbation Load Approaches (SPLA or MPLA) are considered to model the geometric initial imperfection modeling techniques, and Single Boundary Perturbation Approach (SBPA) is used to represent the boundary imperfection modeling technique. When the internal pressures of 0 and 40 kPa, the SPLA can provide less conservative KDFs. However, the robust KDFs for the cylinder subjected to an internal pressure of 100 kPa are derived using the SBPA. These results show that the initial imperfection modeling must be appropriately selected considering the internal pressure levels of the thin-walled cylinder.
引用
收藏
页码:698 / 715
页数:18
相关论文
共 25 条
[1]  
Dassault Systemes Simulia Corp, 2013, AB US VER 6 13 2
[2]   Future structural stability design for composite space and airframe structures [J].
Degenhardt, Richard ;
Castro, Saullo G. P. ;
Arbelo, Mariano A. ;
Zimmerman, Rolf ;
Khakimova, Regina ;
Kling, Alexander .
THIN-WALLED STRUCTURES, 2014, 81 :29-38
[3]   Discrepancy between boundary conditions and load introduction of full-scale built-in and sub-scale experimental shell structures of space launcher vehicles [J].
Friedrich, Linus ;
Schroeder, Kai-Uwe .
THIN-WALLED STRUCTURES, 2016, 98 :403-415
[4]   Worst Multiple Perturbation Load Approach of stiffened shells with and without cutouts for improved knockdown factors [J].
Hao, Peng ;
Wang, Bo ;
Li, Gang ;
Meng, Zeng ;
Tian, Kuo ;
Zeng, Dujuan ;
Tang, Xiaohan .
THIN-WALLED STRUCTURES, 2014, 82 :321-330
[5]  
Haynie W., 2012, 53 AIAA ASME ASCE AH
[6]  
Hilburger M.W., 2020, NASA/SP-8007-2020/REV 2
[7]  
Hilburger M.W., 2012, 53 AIAAASMEASCEAHSAS, DOI [10.2514/6. 2012-1686, DOI 10.2514/6.2012-1686]
[8]   Robust design of composite cylindrical shells under axial compression -: Simulation and validation [J].
Huehne, C. ;
Rolfes, R. ;
Breitbach, E. ;
Tessmer, J. .
THIN-WALLED STRUCTURES, 2008, 46 (7-9) :947-962
[9]   Experimental and numerical approach for predicting global buckling load of pressurized unstiffened cylindrical shells using vibration correlation technique [J].
Jeon, Min-Hyeok ;
Cho, Hyun-Jun ;
Sim, Chang-Hoon ;
Kim, Yeon-Ju ;
Lee, Mi-Yeon ;
Kim, In-Gul ;
Park, Jae-Sang .
COMPOSITE STRUCTURES, 2023, 305
[10]   Buckling Knockdown Factors of Composite Cylinders under Both Compression and Internal Pressure [J].
Kim, Do-Young ;
Sim, Chang-Hoon ;
Park, Jae-Sang ;
Yoo, Joon-Tae ;
Yoon, Young-Ha ;
Lee, Keejoo .
AEROSPACE, 2021, 8 (11)