Artificial intelligence algorithms for prediction of the ultimate tensile strength of the friction stir welded magnesium alloys

被引:6
|
作者
Mishra, Akshansh [1 ]
机构
[1] Politecn Milan, Sch Ind & Informat Engn, Milan, Italy
关键词
Artificial Intelligence; Machine learning; Friction stir welding; Ultimate Tensile Strength; Magnesium alloys; INDUSTRY; 4.0; TECHNOLOGIES; TEMPERATURE;
D O I
10.1007/s12008-022-01180-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial Intelligence algorithms based on the machine learning approach finds application in manufacturing and materials industries for the prediction and optimization of mechanical and microstructure properties. In the present study, six supervised machine learning regression-based algorithms i.e., Decision Trees, XGBoost, Artificial Neural networks, Random Forests, Gradient Boosting, and AdaBoost are used for the prediction of the Ultimate Tensile Strength of the Friction Stir Welded magnesium joints. Magnesium alloy type (AM20, AZ61A, AZ31B, and AZ31), Plunge Depth (mm), Shoulder Diameter (mm), Tool Traverse Speed (mm/min), Pin Diameter (mm), Axial Force (kN), and Tool Rotational Speed (RPM) are the input parameters while the Ultimate Tensile Strength (MPa) of the Friction Stir Welded joints is an output parameter. The results showed that the Magnesium Alloy type has the highest feature importance in comparison to other input parameters. It is also observed that the XGBoost algorithms yield highest coefficient of determination of 0.81.& nbsp;
引用
收藏
页码:1779 / 1787
页数:9
相关论文
共 50 条
  • [41] Investigation on surface roughness, ultimate tensile strength, and microhardness of friction stir welded AA7075-T651 joint
    Gaikwad, Vaibhav S.
    Chinchanikar, Satish
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 8061 - 8065
  • [42] Experimental investigation of tensile strength of friction stir welded butt joints on PMMA
    Adibeig, Mohammad Reza
    Hassanifard, Soran
    Vakili-Tahami, Farid
    Hattel, Jesper Henri
    MATERIALS TODAY COMMUNICATIONS, 2018, 17 : 238 - 245
  • [43] Tensile Test on Friction Stir Welded AZ31B and AZ91B Magnesium Alloys
    Yugandhar M.
    Naik B.D.
    Kammar P.
    International Journal of Vehicle Structures and Systems, 2023, 15 (02) : 276 - 282
  • [44] Prediction of the tensile strength of friction stir welded joints based on one-dimensional convolutional neural network
    Lu, Xiaohong
    Ma, Chong
    Yang, Banghua
    Sun, Shixuan
    Xu, Kai
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (02) : 2279 - 2288
  • [45] Microstructural investigation and mechanical properties of dissimilar friction stir welded magnesium alloys
    Liu, Z.
    Liu, D.
    Xu, J.
    Zheng, X.
    Liu, Q.
    Xin, R.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2015, 20 (03) : 264 - 270
  • [46] MICROSTRUCTURE AND PROPERTIES OF FRICTION STIR BUTT-WELDED MAGNESIUM CASTING ALLOYS
    Miara, D.
    Pietras, A.
    Mroczka, K.
    ARCHIVES OF METALLURGY AND MATERIALS, 2011, 56 (03) : 749 - 758
  • [47] Tensile behavior of friction-stir welded AZ31 magnesium alloy
    Mironov, S.
    Onuma, T.
    Sato, Y. S.
    Yoneyama, S.
    Kokawa, H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 679 : 272 - 281
  • [48] Tensile Strength of Friction-Welded Joints of Copper Alloys to Steels
    Ochi, Hiizu
    Yamamoto, Yoshiaki
    Kawai, Gosaku
    Suga, Yasuo
    PROCEEDINGS OF THE EIGHTEENTH (2008) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 4, 2008, : 272 - +
  • [49] Predicting the Ultimate Tensile Strength of Friction Stir Welds Using Gaussian Process Regression
    Hartl, Roman
    Vieltorf, Fabian
    Benker, Maximilian
    Zaeh, Michael E.
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (03):
  • [50] Effect of material location and tool rotational speed on microstructure and tensile strength of dissimilar friction stir welded aluminum alloys
    Dinaharan, I.
    Kalaiselvan, K.
    Vijay, S. J.
    Raja, P.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2012, 12 (04) : 446 - 454