Artificial intelligence algorithms for prediction of the ultimate tensile strength of the friction stir welded magnesium alloys

被引:6
|
作者
Mishra, Akshansh [1 ]
机构
[1] Politecn Milan, Sch Ind & Informat Engn, Milan, Italy
关键词
Artificial Intelligence; Machine learning; Friction stir welding; Ultimate Tensile Strength; Magnesium alloys; INDUSTRY; 4.0; TECHNOLOGIES; TEMPERATURE;
D O I
10.1007/s12008-022-01180-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial Intelligence algorithms based on the machine learning approach finds application in manufacturing and materials industries for the prediction and optimization of mechanical and microstructure properties. In the present study, six supervised machine learning regression-based algorithms i.e., Decision Trees, XGBoost, Artificial Neural networks, Random Forests, Gradient Boosting, and AdaBoost are used for the prediction of the Ultimate Tensile Strength of the Friction Stir Welded magnesium joints. Magnesium alloy type (AM20, AZ61A, AZ31B, and AZ31), Plunge Depth (mm), Shoulder Diameter (mm), Tool Traverse Speed (mm/min), Pin Diameter (mm), Axial Force (kN), and Tool Rotational Speed (RPM) are the input parameters while the Ultimate Tensile Strength (MPa) of the Friction Stir Welded joints is an output parameter. The results showed that the Magnesium Alloy type has the highest feature importance in comparison to other input parameters. It is also observed that the XGBoost algorithms yield highest coefficient of determination of 0.81.& nbsp;
引用
收藏
页码:1779 / 1787
页数:9
相关论文
共 50 条
  • [21] Experimental Analysis and Optimization to Maximize Ultimate Tensile Strength and Ultimate Elongation of Friction Stir Welded AA6082 Aluminum Alloy
    Simoncini, Michela
    Costa, Antonio
    Fichera, Sergio
    Forcellese, Archimede
    METALS, 2021, 11 (01) : 1 - 21
  • [22] Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys
    Li, Zhenming
    Wang, Qigui
    Luo, Alan A.
    Fu, Penghuai
    Peng, Liming
    INTERNATIONAL JOURNAL OF FATIGUE, 2015, 80 : 468 - 476
  • [23] Assessing Tensile Strength and Electrical Conductivity of Friction Stir-Welded Joints of Copper and Aluminum Alloys
    Hoyos, Elizabeth
    Serna, Maria Camila
    Montoya, Yesid
    Cordoba, Jorge Hernan
    METALS, 2024, 14 (06)
  • [24] MATHEMATICAL MODEL TO PREDICT TENSILE STRENGTH OF UNDERWATER FRICTION STIR WELDED (UFSW) ON 5052 ALUMINIUM ALLOYS
    Paramaguru, Dhanis
    Pedapati, Srinivasa Rao
    Awang, Mokhtar
    Mohebbi, Hamed
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 2, 2019,
  • [25] Prediction of tensile strength of friction stir welded stir cast AA6061-T6/AlNp composite
    Murugan, N.
    Kumar, B. Ashok
    MATERIALS & DESIGN, 2013, 51 : 998 - 1007
  • [26] Tensile properties of aluminium and copper alloys friction stir welded joints
    Harisha, P.
    Nanjundaswamy, H. M.
    Divakar, H. N.
    Krishnan, Dinesh
    MATERIALS TODAY-PROCEEDINGS, 2022, 54 : 223 - 227
  • [27] THE TENSILE BEHAVIOUR OF FRICTION-STIR-WELDED DISSIMILAR ALUMINIUM ALLOYS
    Palanivel, R.
    Mathews, P. Koshy
    MATERIALI IN TEHNOLOGIJE, 2011, 45 (06): : 623 - 626
  • [28] Tensile behavior of dissimilar friction stir welded joints of aluminium alloys
    Sundaram, N. Shanmuga
    Murugan, N.
    MATERIALS & DESIGN, 2010, 31 (09) : 4184 - 4193
  • [29] Tensile properties of aluminium and copper alloys friction stir welded joints
    Harisha, P.
    Nanjundaswamy, H.M.
    Divakar, H.N.
    Krishnan, Dinesh
    Materials Today: Proceedings, 2022, 54 : 223 - 227
  • [30] Determination of the Ultimate Tensile Strength (UTS) of friction stir welded similar AA6061 joints by using supervised machine learning based algorithms
    Mishra, Akshansh
    Morisetty, Rakesh
    MANUFACTURING LETTERS, 2022, 32 : 83 - 86