Simulation of binary collision of liquid drops using smoothed particle hydrodynamics with adaptive spatial resolution

被引:2
|
作者
Zhang, Xinshuo [1 ,2 ]
Yang, Xiufeng [1 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Delft Univ Technol, Dept Mech Maritime & Mat Engn, NL-2628 CD Delft, Netherlands
基金
中国国家自然科学基金;
关键词
COALESCENCE; SPH; SEPARATION; FLOWS;
D O I
10.1103/PhysRevE.108.025302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The binary collision of water drops in the air is studied by two-dimensional numerical simulation utilizing smoothed particle hydrodynamics with adaptive spatial resolution. The numerical method is validated by comparing the simulation with experiment. Three basic modes of equal-size drop collision are observed in numerical simulations at Weber number 3 We 120 and impact parameter 0 x 0.8, namely, reflexive separation, stretching separation, and coalescence collision. Based on the numerical results of different collision modes, the specific phenomena, evolution patterns, and physical principles are discussed. In particular, the detailed processes of the necking phenomenon and the propagation of surface wave in separation collision are obtained, corroborating the "end-pinching" theory proposed in the literature. At higher Weber numbers, the recoalescence of satellite drops is observed. The collision of unequal-size drops is also investigated. The effects of three dimensionless parameters, namely, drop diameter ratio, Weber number, and impact parameter are discussed. The physical mechanisms of some special phenomena are expressed in detail.
引用
收藏
页数:14
相关论文
empty
未找到相关数据