TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection

被引:16
作者
Wang, Siyang [1 ,2 ,3 ]
Wu, Dasheng [1 ,2 ,3 ]
Zheng, Xinyu [1 ,2 ,3 ]
机构
[1] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou, Peoples R China
[2] State Forestry & Grassland Adm Forestry Sensing Te, Key Lab, Hangzhou, Peoples R China
[3] Key Lab Forestry Intelligent Monitoring & Informat, Hangzhou, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
基金
中国国家自然科学基金;
关键词
YOLOv7; contextual transformer; BiFPN; CA; SIoU; tea bud grading detection;
D O I
10.3389/fpls.2023.1223410
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction: Accurate grading identification of tea buds is a prerequisite for automated tea-picking based on machine vision system. However, current target detection algorithms face challenges in detecting tea bud grades in complex backgrounds. In this paper, an improved YOLOv7 tea bud grading detection algorithm TBC-YOLOv7 is proposed.Methods: The TBC-YOLOv7 algorithm incorporates the transformer architecture design in the natural language processing field, integrating the transformer module based on the contextual information in the feature map into the YOLOv7 algorithm, thereby facilitating self-attention learning and enhancing the connection of global feature information. To fuse feature information at different scales, the TBC-YOLOv7 algorithm employs a bidirectional feature pyramid network. In addition, coordinate attention is embedded into the critical positions of the network to suppress useless background details while paying more attention to the prominent features of tea buds. The SIOU loss function is applied as the bounding box loss function to improve the convergence speed of the network.Result: The results of the experiments indicate that the TBC-YOLOv7 is effective in all grades of samples in the test set. Specifically, the model achieves a precision of 88.2% and 86.9%, with corresponding recall of 81% and 75.9%. The mean average precision of the model reaches 87.5%, 3.4% higher than the original YOLOv7, with average precision values of up to 90% for one bud with one leaf. Furthermore, the F1 score reaches 0.83. The model's performance outperforms the YOLOv7 model in terms of the number of parameters. Finally, the results of the model detection exhibit a high degree of correlation with the actual manual annotation results ( R-2 =0.89), with the root mean square error of 1.54.Discussion: The TBC-YOLOv7 model proposed in this paper exhibits superior performance in vision recognition, indicating that the improved YOLOv7 model fused with transformer-style module can achieve higher grading accuracy on densely growing tea buds, thereby enables the grade detection of tea buds in practical scenarios, providing solution and technical support for automated collection of tea buds and the judging of grades.
引用
收藏
页数:18
相关论文
共 47 条
  • [31] A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5
    Wu, Yuezhong
    Xiao, Falong
    Liu, Fumin
    Sun, Yuxuan
    Deng, Xiaoheng
    Lin, Lixin
    Zhu, Congxu
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [32] YOLOv8-MPEB small target detection algorithm based on UAV images
    Xu, Wenyuan
    Cui, Chuang
    Ji, Yongcheng
    Li, Xiang
    Li, Shuai
    HELIYON, 2024, 10 (08)
  • [33] Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv5
    Guo, Shuyi
    Li, Lulu
    Guo, Tianyou
    Cao, Yunyu
    Li, Yinlei
    SENSORS, 2022, 22 (13)
  • [34] YOLOv7scb: A Small-Target Object Detection Method for Fire Smoke Inspection
    Shao, Dan
    Liu, Yu
    Liu, Guoxing
    Wang, Ning
    Chen, Pu
    Yu, Jiaxun
    Liang, Guangmin
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [35] YOLO-CID: Improved YOLOv7 for X-ray Contraband Image Detection
    Gan, Ning
    Wan, Fang
    Lei, Guangbo
    Xu, Li
    Xu, Chengzhi
    Xiong, Ying
    Zhou, Wen
    ELECTRONICS, 2023, 12 (17)
  • [36] Microscopic Insect Pest Detection in Tea Plantations: Improved YOLOv8 Model Based on Deep Learning
    Wang, Zejun
    Zhang, Shihao
    Chen, Lijiao
    Wu, Wendou
    Wang, Houqiao
    Liu, Xiaohui
    Fan, Zongpei
    Wang, Baijuan
    AGRICULTURE-BASEL, 2024, 14 (10):
  • [37] A lightweight UAV target detection algorithm based on improved YOLOv8s model
    Fubao Ma
    Ran Zhang
    Bowen Zhu
    Xirui Yang
    Scientific Reports, 15 (1)
  • [38] A Real-Time Fish Target Detection Algorithm Based on Improved YOLOv5
    Li, Wanghua
    Zhang, Zhenkai
    Jin, Biao
    Yu, Wangyang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [39] LMDFS: A Lightweight Model for Detecting Forest Fire Smoke in UAV Images Based on YOLOv7
    Chen, Gong
    Cheng, Renxi
    Lin, Xufeng
    Jiao, Wanguo
    Bai, Di
    Lin, Haifeng
    REMOTE SENSING, 2023, 15 (15)
  • [40] Defect Detection for Metal Shaft Surfaces Based on an Improved YOLOv5 Algorithm and Transfer Learning
    Li, Bi
    Gao, Quanjie
    SENSORS, 2023, 23 (07)