A Client Selection Method Based on Loss Function Optimization for Federated Learning

被引:3
作者
Zeng, Yan [1 ,2 ,3 ]
Teng, Siyuan [1 ]
Xiang, Tian [4 ]
Zhang, Jilin [1 ,2 ,3 ]
Mu, Yuankai [5 ]
Ren, Yongjian [1 ,2 ,3 ]
Wan, Jian [1 ,2 ,3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Minist Educ, Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Peoples R China
[3] Zhejiang Engn Res Ctr Data Secur Governance, Hangzhou 310018, Peoples R China
[4] Zhejiang Lab, Intelligent Robot Res Ctr, Hangzhou 311100, Peoples R China
[5] Hangzhou Dianzi Univ, HDU ITMO Joint Inst, Hangzhou 310018, Peoples R China
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2023年 / 137卷 / 01期
基金
中国国家自然科学基金;
关键词
Federated learning; model aggregation; Non-IID;
D O I
10.32604/cmes.2023.027226
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Federated learning is a distributed machine learning method that can solve the increasingly serious problem of data islands and user data privacy, as it allows training data to be kept locally and not shared with other users. It trains a global model by aggregating locally-computed models of clients rather than their raw data. However, the divergence of local models caused by data heterogeneity of different clients may lead to slow convergence of the global model. For this problem, we focus on the client selection with federated learning, which can affect the convergence performance of the global model with the selected local models. We propose FedChoice, a client selection method based on loss function optimization, to select appropriate local models to improve the convergence of the global model. It firstly sets selected probability for clients with the value of loss function, and the client with high loss will be set higher selected probability, which can make them more likely to participate in training. Then, it introduces a local control vector and a global control vector to predict the local gradient direction and global gradient direction, respectively, and calculates the gradient correction vector to correct the gradient direction to reduce the cumulative deviation of the local gradient caused by the Non-IID data. We make experiments to verify the validity of FedChoice on CIFAR-10, CINIC-10, MNIST, EMNITS, and FEMNIST datasets, and the results show that the convergence of FedChoice is significantly improved, compared with FedAvg, FedProx, and FedNova.
引用
收藏
页码:1047 / 1064
页数:18
相关论文
共 50 条
  • [31] Incentive Mechanism for Federated Learning With Random Client Selection
    Wu, Hongyi
    Tang, Xiaoying
    Zhang, Ying-Jun Angela
    Gao, Lin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1922 - 1933
  • [32] Compressed Client Selection for Efficient Communication in Federated Learning
    Mohamed, Aissa Hadj
    Assumpcao, Nicolas R. G.
    Astudillo, Carlos A.
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [33] A comprehensive survey on client selection strategies in federated learning
    Li, Jian
    Chen, Tongbao
    Teng, Shaohua
    COMPUTER NETWORKS, 2024, 251
  • [34] An Incentive Auction for Heterogeneous Client Selection in Federated Learning
    Pang, Jinlong
    Yu, Jieling
    Zhou, Ruiting
    Lui, John C. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 5733 - 5750
  • [35] A Review of Client Selection Mechanisms in Heterogeneous Federated Learning
    Wang, Xiao
    Ge, Lina
    Zhang, Guifeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 761 - 772
  • [36] Federated learning energy saving through client selection
    Maciel, Filipe
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    Braun, Torsten
    PERVASIVE AND MOBILE COMPUTING, 2024, 103
  • [37] Polaris: Accelerating Asynchronous Federated Learning With Client Selection
    Kang, Yufei
    Li, Baochun
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (02) : 446 - 458
  • [38] A Systematic Literature Review on Client Selection in Federated Learning
    Smestad, Carl
    Li, Jingyue
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 2 - 11
  • [39] Federated learning based on asynchronous and adjusted client training
    Dai, Mingjun
    Zhao, Yinglin
    Yuan, Jialong
    Kianoush, Sanaz
    Savazzi, Stefano
    Li, Bingchun
    PHYSICAL COMMUNICATION, 2023, 61
  • [40] A Robust Client Selection Mechanism for Federated Learning Environments
    Veiga, Rafael
    Sousa, John
    Morais, Renan
    Bastos, Lucas
    Lobato, Wellington
    Rosário, Denis
    Cerqueira, Eduardo
    Journal of the Brazilian Computer Society, 30 (01): : 444 - 455