BayeSeg: Bayesian modeling for medical image segmentation with interpretable generalizability*

被引:27
作者
Gao, Shangqi [1 ]
Zhou, Hangqi [1 ]
Gao, Yibo [1 ]
Zhuang, Xiahai [1 ]
机构
[1] Fudan Univ, Sch Data Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Interpretation and generalization; Statistical modeling; Variational Bayes; WHOLE HEART SEGMENTATION; REGULARIZATION METHODS; RESTORATION; ALGORITHMS; EFFICIENT;
D O I
10.1016/j.media.2023.102889
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the cross-domain distribution shift aroused from diverse medical imaging systems, many deep learning segmentation methods fail to perform well on unseen data, which limits their real-world applicability. Recent works have shown the benefits of extracting domain-invariant representations on domain generalization. However, the interpretability of domain-invariant features remains a great challenge. To address this problem, we propose an interpretable Bayesian framework (BayeSeg) through Bayesian modeling of image and label statistics to enhance model generalizability for medical image segmentation. Specifically, we first decompose an image into a spatial-correlated variable and a spatial-variant variable, assigning hierarchical Bayesian priors to explicitly force them to model the domain-stable shape and domain-specific appearance information respectively. Then, we model the segmentation as a locally smooth variable only related to the shape. Finally, we develop a variational Bayesian framework to infer the posterior distributions of these explainable variables. The framework is implemented with neural networks, and thus is referred to as deep Bayesian segmentation. Quantitative and qualitative experimental results on prostate segmentation and cardiac segmentation tasks have shown the effectiveness of our proposed method. Moreover, we investigated the interpretability of BayeSeg by explaining the posteriors and analyzed certain factors that affect the generalization ability through further ablation studies. Our code is released via https://zmiclab.github.io/projects.html.
引用
收藏
页数:14
相关论文
共 61 条
[1]   ON SOME BAYESIAN REGULARIZATION METHODS FOR IMAGE-RESTORATION [J].
ARCHER, G ;
TITTERINGTON, DM .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (07) :989-995
[2]   Unsupervised image segmentation using Markov random field models [J].
Barker, SA ;
Rayner, PJW .
PATTERN RECOGNITION, 2000, 33 (04) :587-602
[3]   The intrinsic Bayes factor for model selection and prediction [J].
Berger, JO ;
Pericchi, LR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :109-122
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[6]  
Bloch N., 2015, NCI-ISBI 2013 challenge: automated segmentation of prostate structures
[7]  
Chan M., 1994, Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, P7, DOI 10.1109/IAI.1994.336691
[8]   Bayesian restoration using a new nonstationary edge-preserving image prior [J].
Chantas, Giannis K. ;
Galatsanos, Nikolaos P. ;
Likas, Aristidis C. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) :2987-2997
[9]  
Chen Chen, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12261), P667, DOI 10.1007/978-3-030-59710-8_65
[10]   MARKOV RANDOM FIELD TEXTURE MODELS [J].
CROSS, GR ;
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (01) :25-39