Evaluating interpretable machine learning predictions for cryptocurrencies

被引:3
|
作者
El Majzoub, Ahmad [1 ]
Rabhi, Fethi A. [1 ]
Hussain, Walayat [2 ]
机构
[1] Univ New South Wales UNSW, Sch Comp Sci & Engn, Kensington, Australia
[2] Australian Catholic Univ, Peter Faber Business Sch, North Sydney, Australia
关键词
artificial intelligence; cryptocurrency; deep learning; interpretability; machine learning; technical indicators; time series forecasting;
D O I
10.1002/isaf.1538
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study explores various machine learning and deep learning applications on financial data modelling, analysis and prediction processes. The main focus is to test the prediction accuracy of cryptocurrency hourly returns and to explore, analyse and showcase the various interpretability features of the ML models. The study considers the six most dominant cryptocurrencies in the market: Bitcoin, Ethereum, Binance Coin, Cardano, Ripple and Litecoin. The experimental settings explore the formation of the corresponding datasets from technical, fundamental and statistical analysis. The paper compares various existing and enhanced algorithms and explains their results, features and limitations. The algorithms include decision trees, random forests and ensemble methods, SVM, neural networks, single and multiple features N-BEATS, ARIMA and Google AutoML. From experimental results, we see that predicting cryptocurrency returns is possible. However, prediction algorithms may not generalise for different assets and markets over long periods. There is no clear winner that satisfies all requirements, and the main choice of algorithm will be tied to the user needs and provided resources.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条
  • [1] Toward interpretable machine learning: evaluating models of heterogeneous predictions
    Zhang, Ruixun
    ANNALS OF OPERATIONS RESEARCH, 2024, : 867 - 887
  • [2] Deep Learning Predictions for Cryptocurrencies
    Thavaneswaran, Aerambamoorthy
    Liang, You
    Bowala, Sulalitha
    Paseka, Alex
    Ghahramani, Melody
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1280 - 1285
  • [3] Algorithms for Interpretable Machine Learning
    Rudin, Cynthia
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 1519 - 1519
  • [4] AIMLAI: Advances in Interpretable Machine Learning and Artificial Intelligence
    Bibal, Adrien
    Bouadi, Tassadit
    Frenay, Benoit
    Galarraga, Luis
    Oramas, Jose
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5160 - 5160
  • [5] Forecasting and Trading of the Stable Cryptocurrencies With Machine Learning and Deep Learning Algorithms for Market Conditions
    Shamshad, Hasib
    Ullah, Fasee
    Ullah, Asad
    Kebande, Victor R.
    Ullah, Sibghat
    Al-Dhaqm, Arafat
    IEEE ACCESS, 2023, 11 : 122205 - 122220
  • [6] Interpretable machine learning approaches to prediction of chronic homelessness
    VanBerlo, Blake
    Ross, Matthew A. S.
    Rivard, Jonathan
    Booker, Ryan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [7] On the importance of interpretable machine learning predictions to inform clinical decision making in oncology
    Lu, Sheng-Chieh
    Swisher, Christine L.
    Chung, Caroline
    Jaffray, David
    Sidey-Gibbons, Chris
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [8] Interpretable machine learning methods for predictions in systems biology from omics data
    Sidak, David
    Schwarzerova, Jana
    Weckwerth, Wolfram
    Waldherr, Steffen
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [9] A Survey of Interpretable Machine Learning Methods
    Wang, Yan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 232 - 237
  • [10] Interpretable machine learning for materials design
    James Dean
    Matthias Scheffler
    Thomas A. R. Purcell
    Sergey V. Barabash
    Rahul Bhowmik
    Timur Bazhirov
    Journal of Materials Research, 2023, 38 : 4477 - 4496