Cropland Mapping in Tropical Smallholder Systems with Seasonally Stratified Sentinel-1 and Sentinel-2 Spectral and Textural Features

被引:7
|
作者
Trivedi, Manushi B. [1 ,2 ]
Marshall, Michael [2 ]
Estes, Lyndon [3 ]
de Bie, C. A. J. M. [2 ]
Chang, Ling [2 ]
Nelson, Andrew [2 ]
机构
[1] Cornell Univ, Sch Integrat Plant Sci, Tower Rd, Ithaca, NY 14850 USA
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat, Hengelosest 99, NL-7514 AE Enschede, Netherlands
[3] Clark Univ, Grad Sch Geog, 950 Main St, Worcester, MA 01610 USA
基金
美国国家航空航天局;
关键词
arable area; machine learning; Sentinel; MODIS; elevation; SAR; sub-Saharan; C-BAND; AREA; REFLECTANCE; WORLDVIEW; INDEXES; TIGRAY; IMAGES; WATER; RED;
D O I
10.3390/rs15123014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping arable field areas is crucial for assessing agricultural productivity but poses challenges in sub-Saharan agroecosystems because of diverse crop calendars, small and irregularly shaped fields, persistent cloud cover, and lack of high-quality model training data. This study proposes several methodological improvements to overcome these challenges. Specifically, it utilizes long-term MODIS data to stratify finer Sentinel-2 reflectance and Sentinel-1 backscatter image features on a per-pixel basis. It also incorporates texture features and employs a machine learning approach with over 300,000 samples. The eastern region of Ghana was stratified into seven seasonal strata exhibiting distinct vegetation seasonality, capturing diversity in crop calendars, using long-term MODIS (2001-2009) normalized difference vegetation index phenology. Three years (2017-2019) of Sentinel-1 and Sentinel-2 original bands at 20 m were composited into dry and wet seasonal features according to the strata, from which spectral, polarimetric, and texture features were extracted. The field boundaries were digitized using PlanetScope images (2018-2019). Random Forest classifier with 10-fold cross-validation and recursive feature elimination was used for feature selection and model building. Including topographic variables, out of 137 image features, only 11 features were found important. Sentinel-2 SWIR-based spectral features were most important, followed by Sentinel-1 polarimetric (VV) and elevation features. Half of the 11 features were variance texture features, followed by spectral features. The Random Forest classifier produced a 0.78 AUC score with overall precision, recall, and F1-score of 0.96, 0.78, and 0.85, respectively. While the precision for both classes was >0.90, the recall rate for arable areas was half that of non-arable areas. Future studies could improve the technical workflow with reliable balanced sampling, narrowband hyperspectral images, and fully polarized SAR images.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Monitoring Cropland Abandonment in Hilly Areas with Sentinel-1 and Sentinel-2 Timeseries
    He, Shan
    Shao, Huaiyong
    Xian, Wei
    Yin, Ziqiang
    You, Meng
    Zhong, Jialong
    Qi, Jiaguo
    REMOTE SENSING, 2022, 14 (15)
  • [2] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [3] COUPLING SENTINEL-1 AND SENTINEL-2 IMAGES FOR OPERATIONAL SOIL MOISTURE MAPPING
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Zribi, Mehrez
    Bazzi, Hassan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5537 - 5540
  • [4] Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping
    Adrah, Esmaeel
    Wong, Jesse Pan
    Yin, He
    REMOTE SENSING OF ENVIRONMENT, 2025, 319
  • [5] An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping
    Ghorbanzadeh, Omid
    Didehban, Khalil
    Rasouli, Hamid
    Kamran, Khalil Valizadeh
    Feizizadeh, Bakhtiar
    Blaschke, Thomas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [6] MAPPING FOREST VERTICAL STRUCTURE ATTRIBUTES WITH GEDI, SENTINEL-1, AND SENTINEL-2
    Tsutsumida, Narumasa
    Kato, Akira
    Osawa, Takeshi
    Doi, Hideyuki
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 538 - 541
  • [7] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    Arabian Journal of Geosciences, 2022, 15 (20)
  • [8] Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa
    Tanase, Mihai A.
    Belenguer-Plomer, Miguel A.
    Roteta, Ekhi
    Bastarrika, Aitor
    Wheeler, James
    Fernandez-Carrillo, Angel
    Tansey, Kevin
    Wiedemann, Werner
    Navratil, Peter
    Lohberger, Sandra
    Siegert, Florian
    Chuvieco, Emilio
    REMOTE SENSING, 2020, 12 (02)
  • [9] Using Sentinel-1, Sentinel-2, and Planet Imagery to Map Crop Type of Smallholder Farms
    Rao, Preeti
    Zhou, Weiqi
    Bhattarai, Nishan
    Srivastava, Amit K.
    Singh, Balwinder
    Poonia, Shishpal
    Lobell, David B.
    Jain, Meha
    REMOTE SENSING, 2021, 13 (10)
  • [10] Sentinel 1 and Sentinel 2 for cropland mapping with special emphasis on the usability of textural and vegetation indices
    Koley, Swadhina
    Chockalingam, Jeganathan
    ADVANCES IN SPACE RESEARCH, 2022, 69 (04) : 1768 - 1785