On the number of even roots of permutations

被引:0
作者
Glebsky, Lev [1 ]
Licon, Melany [2 ]
Rivera, Luis Manuel [2 ]
机构
[1] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico
[2] Univ Autonoma Zacatecas, Zacatecas, Mexico
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2023年 / 86卷
关键词
ELEMENTS; ORDER; ALPHA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s be a permutation on n letters. We say that a permutation t is an even (respectively, odd) kth root of s if t(k) = s and t is an even (respectively, odd) permutation. In this article, we obtain generating functions for the number of even and odd kth roots of a permutation, in terms of its cycle type. Our result implies known generating functions of Moser and Wyman and also some generating functions for sequences in the On-line Encyclopedia of Integer Sequences (OEIS).
引用
收藏
页码:308 / 319
页数:12
相关论文
共 32 条
  • [1] Annin S., 2009, PI MU EPSILON J, V12, P581
  • [2] [Anonymous], 1986, MAT ZAMETKI
  • [3] [Anonymous], 1994, DISKRET MAT
  • [4] [Anonymous], 2008, Colloq. Math, V112, P147
  • [5] [Anonymous], 1988, P STEKLOV I MATH+
  • [6] Bóna M, 2000, RANDOM STRUCT ALGOR, V17, P157, DOI 10.1002/1098-2418(200009)17:2<157::AID-RSA4>3.0.CO
  • [7] 2-2
  • [8] BOUWER IZ, 1985, ARS COMBINATORIA, V20A, P83
  • [9] CHERNOFF WW, 1990, ARS COMBINATORIA, V29C, P226
  • [10] PERMUTATIONS WITH P(L)-TH ROOTS
    CHERNOFF, WW
    [J]. DISCRETE MATHEMATICS, 1994, 125 (1-3) : 123 - 127