Integrated modeling of cracking during deep penetration laser welding of nickel alloys

被引:3
作者
Gao, M. Z. [1 ]
Mondal, B. [2 ]
Palmer, T. A. [1 ,2 ,4 ,5 ]
Zhang, W. [3 ]
DebRoy, T. [2 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA USA
[3] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH USA
[4] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
Solidification cracking; deep penetration; keyhole mode laser welding; nickel alloys; heat transfer and fluid flow; finite element model; strain rate; tensile stress; SOLIDIFICATION CRACKING; HEAT-TRANSFER; PREDICTION; STEEL; FLOW;
D O I
10.1080/13621718.2023.2207950
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
During deep penetration laser welding of nickel alloys, interactions between composition and processing conditions can lead to the formation of defects. Inconel 740H, for example, has demonstrated a susceptibility to horizontal fusion zone cracking at locations between 70% and 80% of the weld depth during laser welding at powers above 5 kW. Coupling three-dimensional heat transfer, fluid flow, and stress modeling tools allowed that both the strain rate and stress normal to the solidification direction to be calculated. In the Inconel 740H welds, cracks formed at locations where the strain rate and stress simultaneously reached critical levels. No cracking was observed in the Inconel 690 welds, since the strain rate and stress did not simultaneously reach these critical levels.
引用
收藏
页码:689 / 700
页数:12
相关论文
共 29 条
[1]   Initiation and growth kinetics of solidification cracking during welding of steel [J].
Aucott, L. ;
Huang, D. ;
Dong, H. B. ;
Wen, S. W. ;
Marsden, J. A. ;
Rack, A. ;
Cocks, A. C. F. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Microstructural Evolution of INCONEL® Alloy 740H® Fusion Welds During Creep [J].
Bechetti, Daniel H. ;
DuPont, John N. ;
De Barbadillo, John J. ;
Baker, Brian A. ;
Watanabe, Masashi .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (02) :739-755
[3]   Solidification Map of a Nickel-Base Alloy [J].
Blecher, J. J. ;
Palmer, T. A. ;
DebRoy, T. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (04) :2142-2151
[4]   Welding solidification cracking susceptibility and behavior of a Ni-28W-6Cr alloy [J].
Chen, Shuangjian ;
Ye, Xiang-Xi ;
Tsang, D. K. L. ;
Jiang, Li ;
Yu, Kun ;
Li, Chaowen ;
Li, Zhijun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (01) :29-35
[5]   THE EFFECT OF MELT COMPOSITION ON SOLIDIFICATION CRACKING OF STEEL, WITH PARTICULAR REFERENCE TO CONTINUOUS-CASTING [J].
CLYNE, TW ;
WOLF, M ;
KURZ, W .
METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1982, 13 (02) :259-266
[6]   Initiation and growth mechanisms for weld solidification cracking [J].
Coniglio, N. ;
Cross, C. E. .
INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (07) :375-397
[7]   Mechanisms for Solidification Crack Initiation and Growth in Aluminum Welding [J].
Coniglio, N. ;
Cross, C. E. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (11) :2718-2728
[8]  
deBarbadillo JJ, 2017, WOODHEAD PUBL SER EN, P469, DOI 10.1016/B978-0-08-100552-1.00014-2
[9]  
Dupont JN, 1998, WELD J, V77, p417S
[10]   Effect of plastic strain on the solidification cracking of Hastelloy-X in the selective laser melting process [J].
Kitano, Houichi ;
Tsujii, Masakazu ;
Kusano, Masahiro ;
Yumoto, Atsushi ;
Watanabe, Makoto .
ADDITIVE MANUFACTURING, 2021, 37