Self-Normalized Cramer-Type Moderate Deviations for Explosive Vasicek Model

被引:0
|
作者
Jiang, Hui [1 ]
Pan, Yajuan [1 ]
Wei, Xiao [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R China
[2] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing, Peoples R China
[3] Cent Univ Finance & Econ, Sch Insurance, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer-type moderate deviation; Deviation inequalities; Explosive Vasicek model; Multiple Wiener-Ito integrals; Self-normalized; ORNSTEIN-UHLENBECK PROCESS; BERRY-ESSEEN BOUNDS; SHARP LARGE DEVIATIONS; PARAMETER-ESTIMATION; (CO-)VOLATILITY VECTOR; LONG-MEMORY; ESTIMATOR; INEQUALITIES;
D O I
10.1007/s10959-023-01264-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By deviation inequalities for multiple Wiener-Ito integrals, we study the deviation inequalities for some quadratic functionals in the explosive Vasicek model. Then, self-normalized Cramer-type moderate deviations and joint moderate deviations for the maximum likelihood estimators are obtained via asymptotic analysis techniques.
引用
收藏
页码:228 / 250
页数:23
相关论文
共 11 条
  • [1] SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS UNDER DEPENDENCE
    Chen, Xiaohong
    Shao, Qi-Man
    Wu, Wei Biao
    Xu, Lihu
    ANNALS OF STATISTICS, 2016, 44 (04) : 1593 - 1617
  • [2] Self-Normalized Cramér-Type Moderate Deviations for Explosive Vasicek Model
    Hui Jiang
    Yajuan Pan
    Xiao Wei
    Journal of Theoretical Probability, 2024, 37 : 228 - 250
  • [3] Deviation inequalities and Cramer-type moderate deviations for the explosive autoregressive process
    Jiang, Hui
    Wan, Yilong
    Yang, Guangyu
    BERNOULLI, 2022, 28 (04) : 2634 - 2662
  • [4] Self-normalized Cramer moderate deviations for a supercritical Galton-Watson process
    Fan, Xiequan
    Shao, Qi-Man
    JOURNAL OF APPLIED PROBABILITY, 2023, 60 (04) : 1281 - 1292
  • [5] Cramer-type moderate deviations for statistics in the non-stationary Ornstein-Uhlenbeck process
    Jiang, Hui
    Zhang, Ning
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (03) : 478 - 496
  • [6] Cramer-type moderate deviations for the likelihood ratio process of Ornstein-Uhlenbeck process with shift
    Jiang, Hui
    Liu, Hui
    STOCHASTICS AND DYNAMICS, 2021, 21 (02)
  • [7] A refined Cramer-type moderate deviation for sums of local statistics
    Fang, Xiao
    Luo, Li
    Shao, Qi-Man
    BERNOULLI, 2020, 26 (03) : 2319 - 2352
  • [8] CRAMER TYPE MODERATE DEVIATIONS FOR RANDOM FIELDS
    Beknazaryan, Aleksandr
    Sang, Hailin
    Xiao, Yimin
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 223 - 245
  • [9] CRAMER TYPE MODERATE DEVIATIONS FOR STUDENTIZED U-STATISTICS
    Lai, Tze Leng
    Shao, Qi-Man
    Wang, Qiying
    ESAIM-PROBABILITY AND STATISTICS, 2011, 15 : 168 - 179
  • [10] A Cramer type moderate deviation theorem for the critical Curie-Weiss model
    Van Hao Can
    Viet-Hung Pham
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22