Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction

被引:6
作者
Dudurych, Ivan [1 ]
Garcia-Uceda, Antonio [2 ,3 ]
Petersen, Jens [4 ]
Du, Yihui [5 ]
Vliegenthart, Rozemarijn [1 ,6 ]
de Bruijne, Marleen [2 ,4 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, Groningen, Netherlands
[2] Erasmus MC, Dept Radiol & Nucl Med, BIGR-Na 26-20, Doctor Molewaterplein 40, NL-3015 GD Rotterdam, Netherlands
[3] Erasmus MC, Sophia Children Hosp, Dept Paediat Pulmonol & Allergol, Rotterdam, Netherlands
[4] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
[6] Univ Groningen, Univ Med Ctr Groningen, Data Sci Hlth DASH, Groningen, Netherlands
关键词
Computed tomography; X-ray; Thorax; Bronchi; Artificial intelligence; AIRWAY SEGMENTATION; WALL THICKNESS; CT; INSPIRATION; DIMENSIONS; DIAGNOSIS; ALGORITHM; TREE;
D O I
10.1007/s00330-023-09615-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesComputed tomography (CT)-based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters.MethodsA deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. Bronchial parameters were compared for reproducibility assessment, assuming no change between scans.ResultsOf 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations and 250 branches. The coefficient of determination (R-2) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 at the 6(th) generation, decreasing to 0.51 at the 8(th) generation. Corresponding values for Wall Area Percentage (WAP) were 0.86, 0.67, and 0.42, respectively. Bland-Altman analysis of LA and WAP per generation demonstrated mean differences close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (+/- 3.7% of mean) and wider for LA (+/- 16.4-22.8% for 2-6(th) generations). From the 7(th) generation onwards, there was a sharp decrease in reproducibility and a widening LoA.ConclusionThe outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable way to assess the airway tree down to the 6(th) generation.
引用
收藏
页码:6718 / 6725
页数:8
相关论文
共 33 条
  • [11] Extraction of Airways From CT (EXACT'09)
    Lo, Pechin
    van Ginneken, Bram
    Reinhardt, Joseph M.
    Yavarna, Tarunashree
    de Jong, Pim A.
    Irving, Benjamin
    Fetita, Catalin
    Ortner, Margarete
    Pinho, Romulo
    Sijbers, Jan
    Feuerstein, Marco
    Fabijanska, Anna
    Bauer, Christian
    Beichel, Reinhard
    Mendoza, Carlos S.
    Wiemker, Rafael
    Lee, Jaesung
    Reeves, Anthony P.
    Born, Silvia
    Weinheimer, Oliver
    van Rikxoort, Eva M.
    Tschirren, Juerg
    Mori, Ken
    Odry, Benjamin
    Naidich, David P.
    Hartmann, Ieneke
    Hoffman, Eric A.
    Prokop, Mathias
    Pedersen, Jesper H.
    de Bruijne, Marleen
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (11) : 2093 - 2107
  • [12] Vessel-guided airway tree segmentation: A voxel classification approach
    Lo, Pechin
    Sporring, Jon
    Ashraf, Haseem
    Pedersen, Jesper J. H.
    de Bruijne, Marleen
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (04) : 527 - 538
  • [13] COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease
    Lowe, Katherine E.
    Regan, Elizabeth A.
    Anzueto, Antonio
    Austin, Erin
    Austin, John H. M.
    Beaty, Terri H.
    Benos, Panayiotis, V
    Benway, Christopher J.
    Bhatt, Surya P.
    Bleecker, Eugene R.
    Bodduluri, Sandeep
    Bon, Jessica
    Boriek, Aladin M.
    Boueiz, Adel Re
    Bowler, Russell P.
    Budoff, Matthew
    Casaburi, Richard
    Castaldi, Peter J.
    Charbonnier, Jean-Paul
    Cho, Michael H.
    Comellas, Alejandro
    Conrad, Douglas
    Davis, Corinne Costa
    Criner, Gerard J.
    Curran-Everett, Douglas
    Curtis, Jeffrey L.
    DeMeo, Dawn L.
    Diaz, Alejandro A.
    Dransfield, Mark T.
    Dy, Jennifer G.
    Fawzy, Ashraf
    Fleming, Margaret
    Flenaugh, Eric L.
    Foreman, Marilyn G.
    Fortis, Spyridon
    Gebrekristos, Hirut
    Grant, Sarah
    Grenier, Philippe A.
    Gu, Tian
    Gupta, Abhya
    Han, MeiLan K.
    Hanania, Nicola A.
    Hansel, Nadia N.
    Hayden, Lystra P.
    Hersh, Craig P.
    Hobbs, Brian D.
    Hoffman, Eric A.
    Hogg, James C.
    Hokanson, John E.
    Hoth, Karin F.
    [J]. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION, 2019, 6 (05): : 384 - 399
  • [14] Merkel D., 2014, LINUX J, V239, P2
  • [15] A CT-Based Automated Algorithm for Airway Segmentation Using Freeze-and-Grow Propagation and Deep Learning
    Nadeem, Syed Ahmed
    Hoffman, Eric A.
    Sieren, Jessica C.
    Comellas, Alejandro P.
    Bhatt, Surya P.
    Barjaktarevic, Igor Z.
    Abtin, Fereidoun
    Saha, Punam K.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) : 405 - 418
  • [16] Notz MDS., 2013, BASIC PRACTICE STAT
  • [17] The Danish Randomized Lung Cancer CT Screening Trial-Overall Design and Results of the Prevalence Round
    Pedersen, Jesper H.
    Ashraf, Haseem
    Dirksen, Asger
    Bach, Karen
    Hansen, Hanne
    Toennesen, Phillip
    Thorsen, Hanne
    Brodersen, John
    Skov, Birgit Guldhammer
    Dossing, Martin
    Mortensen, Jann
    Richter, Klaus
    Clementsen, Paul
    Seersholm, Niels
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (05) : 608 - 614
  • [18] Increasing Accuracy of Optimal Surfaces Using Min-Marginal Energies
    Petersen, Jens
    Arias-Lorza, Andres M.
    Selvan, Aghavendra
    Bos, Daniel
    van der Lugt, Aad
    Pedersen, Jesper H.
    Nielsen, Mads
    de Bruijne, Marleen
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (07) : 1559 - 1568
  • [19] Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation
    Petersen, Jens
    Wille, Mathilde M. W.
    Raket, Lars Lau
    Feragen, Aasa
    Pedersen, Jesper H.
    Nielsen, Mads
    Dirksen, Asger
    de Bruijne, Marleen
    [J]. EUROPEAN RADIOLOGY, 2014, 24 (09) : 2319 - 2325
  • [20] Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease
    Petersen, Jens
    Nielsen, Mads
    Lo, Pechin
    Nordenmark, Lars Haug
    Pedersen, Jesper Hoist
    Wille, Mathilde Marie Winkler
    Dirksen, Asger
    de Bruijne, Marleen
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (03) : 531 - 541