Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction

被引:6
作者
Dudurych, Ivan [1 ]
Garcia-Uceda, Antonio [2 ,3 ]
Petersen, Jens [4 ]
Du, Yihui [5 ]
Vliegenthart, Rozemarijn [1 ,6 ]
de Bruijne, Marleen [2 ,4 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, Groningen, Netherlands
[2] Erasmus MC, Dept Radiol & Nucl Med, BIGR-Na 26-20, Doctor Molewaterplein 40, NL-3015 GD Rotterdam, Netherlands
[3] Erasmus MC, Sophia Children Hosp, Dept Paediat Pulmonol & Allergol, Rotterdam, Netherlands
[4] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
[6] Univ Groningen, Univ Med Ctr Groningen, Data Sci Hlth DASH, Groningen, Netherlands
关键词
Computed tomography; X-ray; Thorax; Bronchi; Artificial intelligence; AIRWAY SEGMENTATION; WALL THICKNESS; CT; INSPIRATION; DIMENSIONS; DIAGNOSIS; ALGORITHM; TREE;
D O I
10.1007/s00330-023-09615-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesComputed tomography (CT)-based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters.MethodsA deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. Bronchial parameters were compared for reproducibility assessment, assuming no change between scans.ResultsOf 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations and 250 branches. The coefficient of determination (R-2) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 at the 6(th) generation, decreasing to 0.51 at the 8(th) generation. Corresponding values for Wall Area Percentage (WAP) were 0.86, 0.67, and 0.42, respectively. Bland-Altman analysis of LA and WAP per generation demonstrated mean differences close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (+/- 3.7% of mean) and wider for LA (+/- 16.4-22.8% for 2-6(th) generations). From the 7(th) generation onwards, there was a sharp decrease in reproducibility and a widening LoA.ConclusionThe outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable way to assess the airway tree down to the 6(th) generation.
引用
收藏
页码:6718 / 6725
页数:8
相关论文
共 33 条
  • [1] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [2] Segmentation of the Airway Tree From Chest CT Using Tiny Atrous Convolutional Network
    Cheng, Guohua
    Wu, Xiaoming
    Xiang, Wending
    Guo, Chuan
    Ji, Hongli
    He, Linyang
    [J]. IEEE ACCESS, 2021, 9 : 33583 - 33594
  • [3] Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis
    Dudurych, Ivan
    Muiser, Susan
    McVeigh, Niall
    Kerstjens, Huib A. M.
    van den Berge, Maarten
    de Bruijne, Marleen
    Vliegenthart, Rozemarijn
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (08) : 5308 - 5318
  • [4] Creating a training set for artificial intelligence from initial segmentations of airways
    Dudurych, Ivan
    Garcia-Uceda, Antonio
    Saghir, Zaigham
    Tiddens, Harm A. W. M.
    Vliegenthart, Rozemarijn
    de Bruijne, Marleen
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
  • [5] Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
    Garcia-Uceda, Antonio
    Selvan, Raghavendra
    Saghir, Zaigham
    Tiddens, Harm A. W. M.
    de Bruijne, Marleen
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Screening for Early Lung Cancer, Chronic Obstructive Pulmonary Disease, and Cardiovascular Disease (the Big-3) Using Low-dose Chest Computed Tomography Current Evidence and Technical Considerations
    Heuvelmans, Marjolein A.
    Vonder, Marleen
    Rook, Mieneke
    Groen, Harry J. M.
    De Bock, Geertruida H.
    Xie, Xueqian
    Ijzerman, Maarten J.
    Vliegenthart, Rozemarijn
    Oudkerk, Matthijs
    [J]. JOURNAL OF THORACIC IMAGING, 2019, 34 (03) : 160 - 169
  • [7] Estpar RS, 2006, LECT NOTES COMPUT SC, V4191, P125
  • [8] An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data
    King, GG
    Müller, NL
    Whittall, KP
    Xiang, QS
    Paré, PD
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2000, 161 (02) : 574 - 580
  • [9] Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification
    Kuo, Wieying
    de Bruijne, Marleen
    Petersen, Jens
    Nasserinejad, Kazem
    Ozturk, Hadiye
    Chen, Yong
    Perez-Rovira, Adria
    Tiddens, Harm A. W. M.
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (11) : 4680 - 4689
  • [10] SMALL AIRWAYS DIMENSIONS IN ASTHMA AND IN CHRONIC OBSTRUCTIVE PULMONARY-DISEASE
    KUWANO, K
    BOSKEN, CH
    PARE, PD
    BAI, TR
    WIGGS, BR
    HOGG, JC
    [J]. AMERICAN REVIEW OF RESPIRATORY DISEASE, 1993, 148 (05): : 1220 - 1225