Assessment of ensemble learning for object-based land cover mapping using multi-temporal Sentinel-1/2 images

被引:6
|
作者
Xu, Suchen [1 ]
Xiao, Wu [1 ]
Ruan, Linlin [1 ]
Chen, Wenqi [1 ]
Du, Jingnan [2 ]
机构
[1] Zhejiang Univ, Dept Land Management, Hangzhou, Peoples R China
[2] Zhejiang Univ, Dept Publ Adm, Hangzhou, Peoples R China
关键词
land cover mapping; multi-temporal; Sentinel; object-based; SUPPORT VECTOR MACHINES; FOREST CLASSIFICATION; TIME-SERIES; URBAN; SEGMENTATION; INTEGRATION; SYSTEM; AMAZON;
D O I
10.1080/10106049.2023.2195832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate land cover mapping is challenging in Southeast Asia where cloud coverage is prevalent and landscape is heterogenous. Object-based mapping, multi-temporal images and combined use of optical and microwave data, provide abundant features in spectral, spatial, temporal, geometric and polarimetric dimensions. And random forest is usually employed due to robustness and efficiency in handling high-dimensional and noisy data. This study assesses whether feature selection and ensemble analysis, which are rarely adopted, yield improved result. Recursive feature elimination decreases original 568 features into a subset of 53 features, achieving the optimal combination of features. Ensemble analysis of random forest, support vector machine, and K-nearest neighbors leads to an overall accuracy of 0.816. Comparison experiments demonstrated the merits of the multi-temporal, multi-source approach, feature elimination and ensemble analysis.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Machine Learning-Based Summer Crops Mapping Using Sentinel-1 and Sentinel-2 Images
    Maleki, Saeideh
    Baghdadi, Nicolas
    Bazzi, Hassan
    Dantas, Cassio Fraga
    Ienco, Dino
    Nasrallah, Yasser
    Najem, Sami
    REMOTE SENSING, 2024, 16 (23)
  • [22] Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms
    Wang, Ming
    Liu, Zhengjia
    Baig, Muhammad Hasan Ali
    Wang, Yongsheng
    Li, Yurui
    Chen, Yuanyan
    LAND USE POLICY, 2019, 88
  • [23] Instance segmentation of center pivot irrigation systems using multi-temporal SENTINEL-1 SAR images
    Albuquerque, Anesmar Olino de
    Carvalho, Osmar Luiz Ferreira de
    Silva, Cristiano Rosa e
    Bem, Pablo Pozzobon de
    Gomes, Roberto Arnaldo Trancoso
    Borges, Dibio Leandro
    Guimaraes, Renato Fontes
    Pimentel, Concepta Margaret McManus
    Junior, Osmar Abilio de Carvalho
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23
  • [24] Land-Use Mapping with Multi-Temporal Sentinel Images Based on Google Earth Engine in Southern Xinjiang Uygur Autonomous Region, China
    Chen, Riqiang
    Yang, Hao
    Yang, Guijun
    Liu, Yang
    Zhang, Chengjian
    Long, Huiling
    Xu, Haifeng
    Meng, Yang
    Feng, Haikuan
    REMOTE SENSING, 2023, 15 (16)
  • [25] Land cover classification using CHRIS/PROBA images and multi-temporal texture
    Jin, Huiran
    Li, Peijun
    Cheng, Tao
    Song, Benqin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (01) : 101 - 119
  • [26] LAND COVER INFORMATION EXTRACTION BASED ON MULTI-TEMPORAL HJ-1 SATELLITE IMAGES
    Zhang, Feng
    Wu, Yanting
    Li, Ying
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4962 - 4965
  • [27] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [28] Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery
    Bhattarai, Rajeev
    Rahimzadeh-Bajgiran, Parinaz
    Weiskittel, Aaron
    Meneghini, Aaron
    MacLean, David A.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 28 - 40
  • [29] Crop type detection using an object-based classification method and multi-temporal Landsat satellite images
    Neamat Karimi
    Sara Sheshangosht
    Mortaza Eftekhari
    Paddy and Water Environment, 2022, 20 : 395 - 412
  • [30] A comparison of object-based image analysis approaches for field boundary delineation using multi-temporal Sentinel-2 imagery
    Watkins, Barry
    van Niekerk, Adriaan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 158 : 294 - 302