Multi-modal unsupervised domain adaptation for semantic image segmentation

被引:15
|
作者
Hu, Sijie [1 ]
Bonardi, Fabien [1 ]
Bouchafa, Samia [1 ]
Sidibe, Desire [1 ]
机构
[1] Univ Paris Saclay, Univ Evry, IBISC, F-91020 Evry Courcouronnes, France
关键词
Unsupervised domain adaptation; Multi -modal learning; Self -supervised learning; Knowledge transfer; Semantic segmentation;
D O I
10.1016/j.patcog.2022.109299
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel multi-modal-based Unsupervised Domain Adaptation (UDA) method for semantic segmentation. Recently, depth has proven to be a relevent property for providing geometric cues to en-hance the RGB representation. However, existing UDA methods solely process RGB images or additionally cultivate depth-awareness with an auxiliary depth estimation task. We argue that geometric cues that are crucial to semantic segmentation, such as local shape and relative position, are challenging to recover from an auxiliary depth estimation task with mere color (RGB) information. In this paper, we propose a novel multi-modal UDA method named MMADT, which relies on both RGB and depth images as input. In particular, we design a Depth Fusion Block (DFB) to recalibrate depth information and leverage Depth Ad-versarial Training (DAT) to bridge the depth discrepancy between the source and target domain. Besides, we propose a self-supervised multi-modal depth estimation assistant network named Geo-Assistant (GA) to align the feature space of RGB and depth and shape the sensitivity of our MMADT to depth infor-mation. We experimentally observed significant performance improvement in multiple synthetic to real adaptation benchmarks, i.e., SYNTHIA-to-Cityscapes, GTA5-to-Cityscapes and SELMA-to-Cityscapes. Addi-tionally, our multi-modal UDA scheme is easy to port to other UDA methods with a consistent perfor-mance boost. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Unsupervised domain adaptation multi-level adversarial network for semantic segmentation based on multi-modal features
    Wang Z.
    Bu S.
    Huang W.
    Zheng Y.
    Wu Q.
    Chang H.
    Zhang X.
    Tongxin Xuebao/Journal on Communications, 2022, 43 (12): : 157 - 171
  • [2] Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning
    Liu, Wei
    Luo, Zhiming
    Cai, Yuanzheng
    Yu, Ying
    Ke, Yang
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 176 : 211 - 221
  • [3] Boosting Multi-Modal Unsupervised Domain Adaptation for LiDAR Semantic Segmentation by Self-Supervised Depth Completion
    Cardace, Adriano
    Conti, Andrea
    Ramirez, Pierluigi Zama
    Spezialetti, Riccardo
    Salti, Samuele
    Stefano, Luigi Di
    IEEE ACCESS, 2023, 11 : 85155 - 85164
  • [4] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    TECHNOLOGIES, 2020, 8 (02)
  • [5] MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation
    Kim, Yeong-Hyeon
    Shin, Ukcheol
    Park, Jinsun
    Kweon, In So
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6497 - 6504
  • [6] Depth Guidance Unsupervised Domain Adaptation for Semantic Segmentation
    Lu J.
    Shi J.
    Zhu H.
    Sun Y.
    Cheng Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (01): : 133 - 141
  • [7] Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation
    Barbosa, Felipe
    Osorio, Fernando
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2025, 111 (01)
  • [8] Style adaptation for avoiding semantic inconsistency in Unsupervised Domain Adaptation medical image segmentation
    Liu, Ziqiang
    Chen, Zhao-Min
    Chen, Huiling
    Teng, Shu
    Chen, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [9] Multichannel Semantic Segmentation with Unsupervised Domain Adaptation
    Watanabe, Kohei
    Saito, Kuniaki
    Ushiku, Yoshitaka
    Harada, Tatsuya
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 600 - 616
  • [10] Unsupervised Domain Adaptation for Referring Semantic Segmentation
    Shi, Haonan
    Pan, Wenwen
    Zhao, Zhou
    Zhang, Mingmin
    Wu, Fei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5807 - 5818