Distinction of Different Colony Types by a Smart-Data-Driven Tool

被引:2
作者
Rodrigues, Pedro Miguel [1 ]
Ribeiro, Pedro [1 ]
Tavaria, Freni Kekhasharu [1 ]
机构
[1] Univ Catolica Portuguesa, Ctr Biotecnol & Quim Fina, Escola Superior Biotecnol, CBQF,Lab Associado, Rua Diogo Botelho 1327, P-4169005 Porto, Portugal
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 01期
关键词
petri-plates; colonies; machine-learning models; discrimination;
D O I
10.3390/bioengineering10010026
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Colony morphology (size, color, edge, elevation, and texture), as observed on culture media, can be used to visually discriminate different microorganisms. Methods: This work introduces a hybrid method that combines standard pre-trained CNN keras models and classical machine-learning models for supporting colonies discrimination, developed in Petri-plates. In order to test and validate the system, images of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) cultured in Petri plates were used. Results: The system demonstrated the following Accuracy discrimination rates between pairs of study groups: 92% for Pseudomonas aeruginosa vs. Staphylococcus aureus, 91% for Escherichia coli vs. Staphylococcus aureus and 84% Escherichia coli vs. Pseudomonas aeruginosa. Conclusions: These results show that combining deep-learning models with classical machine-learning models can help to discriminate bacteria colonies with good accuracy ratios.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Characterization of Pseudomonas aeruginosa isolated from chronically infected children with cystic fibrosis in India -: art. no. 43 [J].
Agarwal, G ;
Kapil, A ;
Kabra, SK ;
Das, BK ;
Dwivedi, SN .
BMC MICROBIOLOGY, 2005, 5 (1)
[2]  
Breakwell D.P., 2007, P ASM C UNDERGRADUAT
[3]  
Chollet F., 2015, Keras
[4]   Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray [J].
Cleven, Berit E. E. ;
Palka-Santini, Maria ;
Gielen, Joerg ;
Meembor, Salima ;
Kroenke, Martin ;
Krut, Oleg .
JOURNAL OF CLINICAL MICROBIOLOGY, 2006, 44 (07) :2389-2397
[5]  
Department of Oral Pathology Coorg Institute of Dental Sciences 2Professor Coorg Institute of Dental Sciences, 2020, Journal of Multidisciplinary Dental Research, V5, P19, DOI [10.38138/jmdr/v5i1.3, 10.38138/JMDR/v5i1.3, DOI 10.38138/JMDR/V5I1.3]
[6]  
Farooq U, 2019, American Journal of Biomedical Science & Research, V3, P391, DOI [10.34297/ajbsr.2019.03.000701, 10.34297/ajbsr.2019.03.000701, DOI 10.34297/AJBSR.2019.03.000701]
[7]  
Hedge A., 2015, Journal of Microbial and Biochemical Technology, V7, P210, DOI 10.4172/1948-5948.1000207
[8]  
Hossain MA, 2021, J BIO-SCI, V29, P123, DOI [10.3329/jbs.v29i2.54961, DOI 10.3329/jbs.v29i2.54961]
[9]  
Khalifa Nour Eldeen Mahmoud, 2019, International Journal of Reasoning-based Intelligent Systems, V11, P256, DOI [10.1504/ijris.2019.102610, 10.1504/ijris.2019.10023444]
[10]   Human sensor-inspired supervised machine learning of smartphone-based paper microfluidic analysis for bacterial species classification [J].
Kim, Sangsik ;
Lee, Min Hee ;
Wiwasuku, Theanchai ;
Day, Alexander S. ;
Youngme, Sujittra ;
Hwang, Dong Soo ;
Yoon, Jeong-Yeol .
BIOSENSORS & BIOELECTRONICS, 2021, 188