Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method

被引:2
作者
Atthapreyangkul, Ampaiphan [1 ]
Hoffman, Mark [1 ,2 ]
Pearce, Garth [3 ]
Standard, Owen [1 ]
机构
[1] UNSW, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
[3] UNSW, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
关键词
Cortical bone; Hierarchical structure; Multiscale; Finite element modelling; Damage onset; MINERALIZED COLLAGEN FIBRILS; POST-YIELD BEHAVIOR; MECHANICAL-PROPERTIES; COMPACT-BONE; VISCOELASTIC PROPERTIES; HIERARCHICAL STRUCTURE; NUMERICAL SIMULATIONS; ELASTIC PROPERTIES; CRACK-PROPAGATION; SACRIFICIAL BONDS;
D O I
10.1016/j.jmbbm.2022.105578
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three-dimensional multi-scale finite element models were designed to examine the effects of geometrical structure variations on the damage onset in cortical bone at multiple structural scales. A cohesive zone finite element approach, together with anisotropic damage initiation criteria, is used to predict the onset of damage. The finite element models are developed to account for the onset of microdamage from the microscopic length scales consisting of collagen fibres, to the macroscopic level consisting of osteons and the Haversian canals. Numerical results indicated that the yield strain at the initiation of microcracks is independent of variations in the local mineral volume fraction at each structural scale. Further, the yield strain and strength properties of cortical bone are dependent on its structural anisotropy and hierarchical structure. A positive correlation is observed between bone strength and mineral content at each length scale.
引用
收藏
页数:13
相关论文
共 106 条
[1]  
Abdel-Wahab AA, 2011, J THEOR APP MECH-POL, V49, P599
[2]   Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM [J].
Abdel-Wahab, Adel A. ;
Maligno, Angelo R. ;
Silberschmidt, Vadim V. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 52 (01) :128-135
[3]   Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects [J].
Anez-Bustillos, Lorenzo ;
Derikx, Loes C. ;
Verdonschot, Nico ;
Calderon, Nathan ;
Zurakowski, David ;
Snyder, Brian D. ;
Nazarian, Ara ;
Tanck, Esther .
BONE, 2014, 58 :160-167
[4]   THE BENDING PROPERTIES OF SINGLE OSTEONS [J].
ASCENZI, A ;
BASCHIERI, P ;
BENVENUTI, A .
JOURNAL OF BIOMECHANICS, 1990, 23 (08) :763-&
[5]   Effect of geometrical structure variations on the viscoelastic and anisotropic behaviour of cortical bone using multi-scale finite element modelling [J].
Atthapreyangkul, Ampaiphan ;
Hoffman, Mark ;
Pearce, Garth .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 113
[6]  
BARBERO EverJ., 2007, FINITE ELEM ANAL DES
[7]   Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue [J].
Bayraktar, HH ;
Morgan, EF ;
Niebur, GL ;
Morris, GE ;
Wong, EK ;
Keaveny, TM .
JOURNAL OF BIOMECHANICS, 2004, 37 (01) :27-35
[8]   On the mechanical properties of hierarchically structured biological materials [J].
Bechtle, Sabine ;
Ang, Siang Fung ;
Schneider, Gerold A. .
BIOMATERIALS, 2010, 31 (25) :6378-6385
[9]   HAVERSIAN OSTEONS - SIZE, DISTRIBUTION, INTERNAL STRUCTURE, AND ORIENTATION [J].
BLACK, J ;
MATTSON, R ;
KOROSTOFF, E .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1974, 8 (05) :299-319
[10]   Damage type and strain mode associations in human compact bone bending fatigue [J].
Boyce, TM ;
Fyhrie, DP ;
Glotkowski, MC ;
Radin, EL ;
Schaffler, MB .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (03) :322-329