Cross-connection structure of locally inverse semigroups

被引:1
作者
Muhammed, P. A. Azeef [1 ]
Volkov, Mikhail V. [2 ]
Auinger, Karl [3 ]
机构
[1] Western Sydney Univ, Ctr Res Math & Data Sci, Penrith, NSW 2751, Australia
[2] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg 620000, Russia
[3] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Locally inverse semigroup; inverse semigroup; completely 0-simple semigroup; category; cross-connection; Ehresmann-Schein-Nambooripad theorem; Rees theorem; REES MATRIX COVERS;
D O I
10.1142/S0218196723500091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Locally inverse semigroups are regular semigroups whose idempotents form pseudosemilattices. We characterize the categories that correspond to locally inverse semi groups in the realm of Nambooripad's cross-connection theory. Further, we specialize our cross-connection description of locally inverse semigroups to inverse semigroups and completely 0-simple semigroups, obtaining structure theorems for these classes. In particular, we show that the structure theorem for inverse semigroups can be obtained using only one category, quite analogous to the Ehresmann-Schein-Nambooripad Theorem; for completely 0-simple semigroups, we show that cross-connections coincide with structure matrices, thus recovering the Rees Theorem by categorical tools.
引用
收藏
页码:123 / 159
页数:37
相关论文
共 50 条
[21]   Subject Independent Facial Expression Recognition: Cross-Connection and Spatial Pyramid Pooling Convolutional Neural Network [J].
Li, Leilei ;
Yuan, Yue ;
Li, Mi ;
Xu, Hongpei ;
Li, Richeng ;
Lu, Shengfu .
PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, :85-92
[22]   On Finite Semigroups Embeddable in Inverse Semigroups [J].
Boris M. Schein .
Semigroup Forum, 2001, 62 :329-330
[23]   On finite semigroups embeddable in inverse semigroups [J].
Schein, BM .
SEMIGROUP FORUM, 2001, 62 (02) :329-330
[24]   On Free Inverse Semigroups [J].
Claudio Gutiérrez .
Semigroup Forum, 2000, 61 :154-158
[25]   Formations of inverse semigroups [J].
Gracinda M. S. Gomes ;
Isabel J. Nobre .
Semigroup Forum, 2022, 105 :217-243
[26]   Coverages on inverse semigroups [J].
de Castro, Gilles G. .
SEMIGROUP FORUM, 2021, 102 (02) :375-396
[27]   Fluorescence monitoring at a recycled water treatment plant and associated dual distribution system - Implications for cross-connection detection [J].
Hambly, A. C. ;
Henderson, R. K. ;
Storey, M. V. ;
Baker, A. ;
Stuetz, R. M. ;
Khan, S. J. .
WATER RESEARCH, 2010, 44 (18) :5323-5333
[28]   Unary iterative hyperidentities for semigroups and inverse semigroups [J].
Cowan, D ;
Wismath, SL .
SEMIGROUP FORUM, 1997, 55 (02) :221-231
[29]   Unary Iterative Hyperidentities for Semigroups and Inverse Semigroups [J].
D. Cowan ;
S.L. Wismath .
Semigroup Forum, 1997, 55 :221-231
[30]   On free inverse semigroups [J].
Gutiérrez, C .
SEMIGROUP FORUM, 2000, 61 (01) :154-158