Note on the q-logarithmic Sobolev and p-Talagrand inequalities on Carnot groups

被引:1
作者
Dagher, Esther Bou [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
关键词
Logarithmic Sobolev inequality; Talagrand inequality; hypercontractivity; Hamilton-Jacobi equation; Carnot-Caratheodory distance; Carnot groups; HOPF-LAX FORMULA; TRANSPORTATION COST;
D O I
10.1142/S0219199722500705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the setting of Carnot groups, we prove the q-logarithmic Sobolev inequality for probability measures as a function of the Carnot-Caratheodory distance. As an application, we use the Hamilton Jacobi equation in the setting of Carnot groups to prove the p-Talagrand inequality and hypercontractivity.
引用
收藏
页数:18
相关论文
共 33 条
  • [1] [Anonymous], 2000, Panoramas et Syntheses Panoramas and Syntheses
  • [2] BAKRY D., 1985, Lecture Notes in Math., V1123, P177
  • [3] The Hopf-Lax formula in Carnot groups: a control theoretic approach
    Balogh, Z. M.
    Calogero, A.
    Pini, R.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) : 1379 - 1414
  • [4] Balogh Z. M., 2011, FUNCTIONAL INEQUALIT
  • [5] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [6] Exponential integrability and transportation cost related to logarithmic sobolev inequalities
    Bobkov, SG
    Götze, F
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) : 1 - 28
  • [7] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities
    Bobkov, SG
    Ledoux, M
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) : 1028 - 1052
  • [8] Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
  • [9] Bou Dagher E., 2021, ARXIV
  • [10] Coercive inequalities in higher-dimensional anisotropic heisenberg group
    Bou Dagher, Esther
    Zegarlinski, Boguslaw
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)