Up to eighth-order maximum-principle-preserving methods for the Allen-Cahn equation

被引:5
作者
Sun, Jingwei [1 ]
Zhang, Hong [1 ]
Qian, Xu [1 ]
Song, Songhe [1 ]
机构
[1] Natl Univ Def Technol, Dept Math, Coll Liberal Arts & Sci, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Allen-Cahn equation; Maximum principle; Integrating factor two-step Runge-Kutta method; Stabilization; RUNGE-KUTTA METHODS; PHASE-FIELD MODEL; FINITE-DIFFERENCE SCHEME; NUMERICAL-ANALYSIS; STABILITY; 2ND-ORDER; APPROXIMATION; TRANSITIONS; MOTION;
D O I
10.1007/s11075-022-01329-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a class of up to eighth-order maximum-principle-preserving (MPP) methods for the Allen-Cahn equation. Beginning with the space-discrete system, we extend the integrating factor two-step Runge-Kutta (IFTSRK) methods and define sufficient conditions for the preservation of the discrete maximum principle. In particular, we combine the IFTSRK methods with the linear stabilization technique to develop the stabilized IFTSRK formulations and successfully derive sufficient conditions to preserve the discrete maximum principle unconditionally. Furthermore, we provide error estimates for these proposed methods. Numerical experiments are carried out to illustrate the high-order accuracy and MPP characteristic of the proposed methods and to verify the efficiency through simulations of the long-time evolutional behavior.
引用
收藏
页码:1041 / 1062
页数:22
相关论文
共 50 条
  • [1] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [2] Geometrical image segmentation by the Allen-Cahn equation
    Benes, M
    Chalupecky, V
    Mikula, K
    [J]. APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 187 - 205
  • [3] A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection
    Chen, Wenbin
    Wang, Cheng
    Wang, Xiaoming
    Wise, Steven M.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (03) : 574 - 601
  • [4] Construction of two-step Runge-Kutta methods with large regions of absolute stability
    Chollom, J
    Jackiewicz, Z
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) : 125 - 137
  • [5] Douglas J., 1971, NUMERICAL SOLUTION P
  • [6] Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations
    Du, Jie
    Yang, Yang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 : 489 - 510
  • [7] ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY
    DU, Q
    GUNZBURGER, MD
    PETERSON, JS
    [J]. SIAM REVIEW, 1992, 34 (01) : 54 - 81
  • [8] NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION
    DU, Q
    NICOLAIDES, RA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) : 1310 - 1322
  • [9] Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes
    Du, Qiang
    Ju, Lili
    Li, Xiao
    Qiao, Zhonghua
    [J]. SIAM REVIEW, 2021, 63 (02) : 317 - 359
  • [10] MAXIMUM PRINCIPLE PRESERVING EXPONENTIAL TIME DIFFERENCING SCHEMES FOR THE NONLOCAL ALLEN-CAHN EQUATION
    Du, Qiang
    Ju, Lili
    Li, Xiao
    Qiao, Zhonghua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 875 - 898