Gravitating anisotropic merons and squashed spheres in the three-dimensional Einstein-Yang-Mills-Chern-Simons theory

被引:4
作者
Canfora, Fabrizio [1 ,2 ]
Corral, Cristobal [3 ,4 ]
机构
[1] Univ San Sebastian, Fac Ingn Arquitectura & Diseno, Gen Lagos 1163, Valdivia 5110693, Chile
[2] Ctr Estudios Cientif CECs, Ave Arturo Prat 514, Valdivia 5110466, Chile
[3] Univ Arturo Prat, Inst Ciencias Exactas & Nat, Playa Brava 3256, Iquique 1111346, Chile
[4] Univ Arturo Prat, Fac Ciencias, Ave Arturo Prat Chacon 2120, Iqu 1110939, Chile
关键词
Classical Theories of Gravity; Solitons Monopoles and Instantons; Black Holes; Chern-Simons Theories; GAUGE NONINVARIANCE; INDEX THEOREM; ANOMALIES; CONFINEMENT; INSTANTONS; TOPOLOGY; SPINORS;
D O I
10.1007/JHEP11(2023)146
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct the first analytic examples of self-gravitating anisotropic merons in the Einstein-Yang-Mills-Chern-Simons theory in three dimensions. The gauge field configurations have different meronic parameters along the three Maurer-Cartan 1-forms and they are topologically nontrivial as the Chern-Simons invariant is nonzero. The corresponding backreacted metric is conformally a squashed three-sphere. The amount of squashing is related to the degree of anisotropy of the gauge field configurations that we compute explicitly in different limits of the squashing parameter. Moreover, the spectrum of the Dirac operator on this background is obtained explicitly for spin-1/2 spinors in the fundamental representation of SU(2), and the genuine non-Abelian contributions to the spectrum are identified. The physical consequences of these results are discussed.
引用
收藏
页数:20
相关论文
共 75 条
[1]   CLASSICAL SOLUTIONS OF SU(2) YANG-MILLS THEORIES [J].
ACTOR, A .
REVIEWS OF MODERN PHYSICS, 1979, 51 (03) :461-525
[2]   STATIC PROPERTIES OF NUCLEONS IN THE SKYRME MODEL [J].
ADKINS, GS ;
NAPPI, CR ;
WITTEN, E .
NUCLEAR PHYSICS B, 1983, 228 (03) :552-566
[3]   MECHANISM FOR QUARK CONFINEMENT [J].
ALLAN, CG ;
DASHEN, R ;
GROSS, DJ .
PHYSICS LETTERS B, 1977, 66 (04) :375-381
[4]   ANOMALIES AND ODD DIMENSIONS [J].
ALVAREZGAUME, L ;
DELLAPIETRA, S ;
MOORE, G .
ANNALS OF PHYSICS, 1985, 163 (02) :288-317
[5]  
Ammon M., 2015, Gauge/gravity duality: Foundations and applications, DOI DOI 10.1017/CBO9780511846373
[6]  
Astrakhantsev N., 2022, Proc. Sci. LATTICE2021, P119
[7]   Lattice Study of QCD Properties under Extreme Conditions: Temperature, Density, Rotation, and Magnetic Field [J].
Astrakhantsev, N. Yu ;
Braguta, V. V. ;
Kolomoyets, N., V ;
Kotov, A. Yu ;
Kuznedelev, D. D. ;
Nikolaev, A. A. ;
Roenko, A. .
PHYSICS OF PARTICLES AND NUCLEI, 2021, 52 (04) :536-541
[8]  
Atiyah M.F., 1973, B LOND MATH SOC, V5, P229
[9]   Axial anomalies of Lifshitz fermions [J].
Bakas, Ioannis ;
Luest, Dieter .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (10) :937-1015
[10]   LOW-MASS SOLITONS FROM FRACTIONAL CHARGES IN QUANTUM CHROMODYNAMICS [J].
BALACHANDRAN, AP ;
NAIR, VP ;
PANCHAPAKESAN, N ;
RAJEEV, SG .
PHYSICAL REVIEW D, 1983, 28 (11) :2830-2839