On the Kato Problem for Elliptic Operators in Non-Divergence Form

被引:0
作者
Escauriaza, Luis [1 ]
Hidalgo-Palencia, Pablo [2 ,3 ]
Hofmann, Steve [4 ]
机构
[1] Univ Basque Country, Apartado 644, Bilbao 48080, Spain
[2] CSIC, Inst Ciencias Matemat CSIC UAM UC3M UCM, E-28049 Madrid, Spain
[3] Univ Complutense Madrid, Fac Matemat, Dept Anal Matemat & Matemat Aplicada, E-28040 Madrid, Spain
[4] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Elliptic operators in non-divergence form; Kato square root problem; Muckenhoupt weights; Littlewood-Paley theory; Functional Calculus; SQUARE-ROOT PROBLEM; DIRICHLET PROBLEM; PARABOLIC EQUATIONS; NONDIVERGENCE FORM; PERTURBATIONS; SPACES; BOUNDS;
D O I
10.1007/s10013-024-00683-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Kato square root problem for non-divergence second order elliptic operators L=- n-ary sumation i,j=1naijDiDj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L =- \sum _{i,j=1}<^>{n}a_{ij} D_iD_j$$\end{document}, and, especially, the normalized adjoints of such operators. In particular, our results are applicable to the case of real coefficients having sufficiently small BMO norm. We assume that the coefficients of the operator are smooth, but our quantitative estimates do not depend on the assumption of smoothness.
引用
收藏
页码:1067 / 1096
页数:30
相关论文
共 45 条
[1]   Analyticity of layer potentials and L2 solvability of boundary value problems for divergence form elliptic equations with complex L∞ coefficients [J].
Alfonseca, M. Angeles ;
Auscher, Pascal ;
Axelsson, Andreas ;
Hofmann, Steve ;
Kim, Seick .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4533-4606
[2]  
[Anonymous], 1997, Ann. Scuola Norm. Super. Pisa Cl. Sci.
[3]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[4]   Extrapolation of Carleson measures and the analyticity of Kato's square-root operators [J].
Auscher, P ;
Hofmann, S ;
Lewis, JL ;
Tchamitchian, P .
ACTA MATHEMATICA, 2001, 187 (02) :161-190
[5]   Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems [J].
Auscher, Pascal ;
Axelsson, Andreas ;
Hofmann, Steve .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (02) :374-448
[6]   THE DIRICHLET PROBLEM FOR SECOND ORDER PARABOLIC OPERATORS IN DIVERGENCE FORM [J].
Auscher, Pascal ;
Egert, Moritz ;
Nystrom, Kaj .
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 :407-441
[7]   L2 well-posedness of boundary value problems for parabolic systems with measurable coefficients [J].
Auscher, Pascal ;
Egert, Moritz ;
Nystrom, Kaj .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (09) :2943-3058
[8]  
Auscher P, 2010, CONTEMP MATH, V505, P105
[9]   Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I [J].
Auscher, Pascal ;
Axelsson, Andreas .
INVENTIONES MATHEMATICAE, 2011, 184 (01) :47-115
[10]   Solvability of elliptic systems with square integrable boundary data [J].
Auscher, Pascal ;
Axelsson, Andreas ;
McIntosh, Alan .
ARKIV FOR MATEMATIK, 2010, 48 (02) :253-287