ObVi-SLAM: Long-Term Object-Visual SLAM

被引:7
作者
Adkins, Amanda [1 ]
Chen, Taijing [1 ]
Biswas, Joydeep [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Simultaneous localization and mapping; Visualization; Feature extraction; Trajectory; Optimization; Robots; Ellipsoids; SLAM; localization; semantic scene understanding;
D O I
10.1109/LRA.2024.3363534
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Robots responsible for tasks over long time scales must be able to localize consistently and scalably amid geometric, viewpoint, and appearance changes. Existing visual SLAM approaches rely on low-level feature descriptors that are not robust to such environmental changes and result in large map sizes that scale poorly over long-term deployments. In contrast, object detections are robust to environmental variations and lead to more compact representations, but most object-based SLAM systems target short-term indoor deployments with close objects. In this letter, we introduce ObVi-SLAM to overcome these challenges by leveraging the best of both approaches. ObVi-SLAM uses low-level visual features for high-quality short-term visual odometry; and to ensure global, long-term consistency, ObVi-SLAM builds an uncertainty-aware long-term map of persistent objects and updates it after every deployment. By evaluating ObVi-SLAM on data from 16 deployment sessions spanning different weather and lighting conditions, we empirically show that ObVi-SLAM generates accurate localization estimates consistent over long time scales in spite of varying appearance conditions.
引用
收藏
页码:2909 / 2916
页数:8
相关论文
共 31 条
  • [1] Agarwal S., 2022, Ceres Solver
  • [2] DOT: Dynamic Object Tracking for Visual SLAM
    Ballester, Irene
    Fontan, Alejandro
    Civera, Javier
    Strobl, Klaus H.
    Triebel, Rudolph
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11705 - 11711
  • [3] DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM
    Bescos, Berta
    Campos, Carlos
    Tardos, Juan D.
    Neira, Jose
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 5191 - 5198
  • [4] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
    Campos, Carlos
    Elvira, Richard
    Gomez Rodriguez, Juan J.
    Montiel, Jose M. M.
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 1874 - 1890
  • [5] Object-Aware SLAM Based on Efficient Quadric Initialization and Joint Data Association
    Cao, ZhenZhong
    Zhang, Yunzhou
    Tian, Rui
    Ma, Rong
    Hu, Xinggang
    Coleman, Sonya
    Kerr, Dermot
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 9802 - 9809
  • [6] Robust Dual Quadric Initialization for Forward-Translating Camera Movements
    Chen, Shujia
    Song, Shuangfu
    Zhao, Junqiao
    Feng, Tiantian
    Ye, Chen
    Xiong, Lu
    Li, Deyi
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 4712 - 4719
  • [7] Self-Supervised Feature Learning for Long-Term Metric Visual Localization
    Chen, Yuxuan
    Barfoot, Timothy D.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 472 - 479
  • [8] Keeping an Eye on Things: Deep Learned Features for Long-Term Visual Localization
    Gridseth, Mona
    Barfoot, Timothy D.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 1016 - 1023
  • [9] Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery
    Grinvald, Margarita
    Furrer, Fadri
    Novkovic, Tonci
    Chung, Jen Jen
    Cadena, Cesar
    Siegwart, Roland
    Nieto, Juan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (03) : 3037 - 3044
  • [10] Hsiung J, 2018, IEEE INT C INT ROBOT, P1146, DOI 10.1109/IROS.2018.8594007