Wigner-Yanase skew information-based uncertainty relations for quantum channels

被引:2
|
作者
Zhang, Qing-Hua [1 ]
Fei, Shao-Ming [2 ,3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 02期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
PRINCIPLE;
D O I
10.1140/epjp/s13360-024-04932-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Yanase skew information stands for the uncertainty about the information on the values of observables not commuting with the conserved quantity. The Wigner-Yanase skew information-based uncertainty relations can be regarded as a complementarity to the conceptual Heisenberg uncertainty principle. We present tight uncertainty relations in both product and summation forms for two quantum channels based on the Wigner-Yanase skew information. We show that our uncertainty inequalities are tighter than the existing ones.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Trace inequalities on a generalized Wigner-Yanase skew information
    Furuichi, S.
    Yanagi, K.
    Kuriyama, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) : 179 - 185
  • [42] Quantifying nonclassicality via Wigner-Yanase skew information
    Luo, Shunlong
    Zhang, Yue
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [43] Uncertainty relations with the generalized Wigner–Yanase–Dyson skew information
    Yajing Fan
    Huaixin Cao
    Wenhua Wang
    Huixian Meng
    Liang Chen
    Quantum Information Processing, 2018, 17
  • [44] Signature of topological quantum phase transitions via Wigner-Yanase skew information
    Cheng, W. W.
    Du, Z. Z.
    Gong, L. Y.
    Zhao, S. M.
    Liu, J. -M.
    EPL, 2014, 108 (04)
  • [45] Uncertainty Relations Based on Modified Wigner-Yanase-Dyson Skew Information
    Zhaoqi Wu
    Lin Zhang
    Jianhui Wang
    Xianqing Li-Jost
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2020, 59 : 704 - 718
  • [46] Uncertainty relations with the generalized Wigner-Yanase-Dyson skew information
    Fan, Yajing
    Cao, Huaixin
    Wang, Wenhua
    Meng, Huixian
    Chen, Liang
    QUANTUM INFORMATION PROCESSING, 2018, 17 (07)
  • [47] Wigner–Yanase Skew Information and Uncertainty Relations for Quaternionic Mixed States
    Wenxin Li
    Pan Lian
    Yuxia Liang
    Advances in Applied Clifford Algebras, 2022, 32
  • [48] Sum Uncertainty Relations Based on (α,β,γ) Weighted Wigner-Yanase-Dyson Skew Information
    Xu, Cong
    Wu, Zhaoqi
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (07)
  • [49] Sum Uncertainty Relations Based on (α,β,γ) Weighted Wigner-Yanase-Dyson Skew Information
    Cong Xu
    Zhaoqi Wu
    Shao-Ming Fei
    International Journal of Theoretical Physics, 61
  • [50] Comments on conjectures of trace inequalities on a generalized Wigner-Yanase skew information
    Ko, Chul Ki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 164 - 167