A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment
被引:5
作者:
Pesantez, Jorge E.
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USACalif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
Pesantez, Jorge E.
[1
]
Li, Binbin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, ZJU UIUC Inst, Haining, Peoples R ChinaCalif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
Li, Binbin
[2
]
Lee, Christopher
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Elect & Comp Engn, 306 Wright St,MC-702, Urbana, IL 61801 USACalif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
Lee, Christopher
[3
]
Zhao, Zhizhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Elect & Comp Engn, 306 Wright St,MC-702, Urbana, IL 61801 USACalif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
Zhao, Zhizhen
[3
]
Butala, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, ZJU UIUC Inst, Haining, Peoples R ChinaCalif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
Butala, Mark
[2
]
Stillwell, Ashlynn S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Civil & Environm Engn, 205 North Mathews Ave, MC-250, Urbana, IL 61801 USACalif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
Stillwell, Ashlynn S.
[4
]
机构:
[1] Calif State Univ, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA
[2] Zhejiang Univ, ZJU UIUC Inst, Haining, Peoples R China
[3] Univ Illinois, Dept Elect & Comp Engn, 306 Wright St,MC-702, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Civil & Environm Engn, 205 North Mathews Ave, MC-250, Urbana, IL 61801 USA
The increasing population migration to urban and peri-urban areas increases basic service needs for cities worldwide. Residential electricity demand increases with more customers and varies with novel uses, such as charging electric vehicles, which may add additional dynamics to the residential electricity demand profile. Widespread installation of smart electricity meters provides fine temporal resolution data reflecting current demands and supports predicting future demands. As part of a demand-side management program, understanding the main drivers of current electricity usage based on demand-driven and exogenous predictors represents a valuable tool for utilities facing new demand scenarios. This work presents the application of multiple models to forecast electricity demand based on the input data and the forecasting horizon. Models with exogenous variables as predictors are part of the input-output category, including a Feed Forward Neural Network, Random Forest, and a Linear Gaussian State Space model. The second category is demand-driven models, where predictors include only previous demand values. The demand-driven models in our analysis include a univariate Nonlinear Autoregressive Neural Network and a Linear Gaussian State Space. Using smart electricity meter data from the greater Chicago area, we compare the performance of the models on two different types of accounts: single-and multi-family residential users when forecasting one and multiple steps. Results show that the Linear Gaussian model reports an R2 of 0.99 compared to an average R2 of 0.92 from the Feed Forward Neural Networks and Random Forest when forecasting single-and multi-family electricity demand one step ahead. However, Nonlinear Autoregressive Neural Networks report an average R2 of 0.85 compared to the Linear Gaussian R2 of 0.58 when forecasting 48 steps. We also found that the most important predictors for single-family demand are temporal variables like weekdays, working and non-working days, and day hours. For multi-family demand, electricity demand at the same hour as the previous week replaces weekdays as a significant predictor. Different forecasting models can assist utilities and city planners to manage demand under different and novel residential electricity usage conditions.
机构:
Jozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
Jozef Stefan Inst, Comp Syst Dept, Ljubljana, SloveniaJozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
Hribar, Rok
Potocnik, Primoz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Lab Synerget, Fac Mech Engn, Ljubljana, SloveniaJozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
Potocnik, Primoz
Silc, Jurij
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Comp Syst Dept, Ljubljana, SloveniaJozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
Silc, Jurij
Papa, Gregor
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
Jozef Stefan Inst, Comp Syst Dept, Ljubljana, SloveniaJozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
机构:
Univ Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, Brazil
Velasquez, Carlos E.
Zocatelli, Matheus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, Brazil
Zocatelli, Matheus
Estanislau, Fidellis B. G. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, Brazil
Estanislau, Fidellis B. G. L.
Castro, Victor F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais UFMG, Dept Engn Nucl, Av Presidente Antonio Carlos 6627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, Brazil
机构:
Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, AustraliaUniv Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
Ghimire, Sujan
Deo, Ravinesh C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, AustraliaUniv Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
Deo, Ravinesh C.
Casillas-Perez, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rey Juan Carlos, Dept Signal Proc & Commun, Fuenlabrada 28942, Madrid, SpainUniv Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
Casillas-Perez, David
Salcedo-Sanz, Sancho
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
Univ Alcala, Dept Signal Proc & Commun, Alcala De Henares 28805, Madrid, SpainUniv Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
Salcedo-Sanz, Sancho
Acharya, Rajendra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, AustraliaUniv Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
机构:
Mathematics, J. C. Bose University of Science and Technology, YMCA, Haryana, FaridabadMathematics, J. C. Bose University of Science and Technology, YMCA, Haryana, Faridabad
Neetu Preeti
undefined Gupta
论文数: 0引用数: 0
h-index: 0
机构:
Mathematics, J. C. Bose University of Science and Technology, YMCA, Haryana, FaridabadMathematics, J. C. Bose University of Science and Technology, YMCA, Haryana, Faridabad
机构:
Chung Ang Univ, Dept Appl Stat, 221,Heukseok Dong, Seoul 06974, South KoreaChung Ang Univ, Dept Appl Stat, 221,Heukseok Dong, Seoul 06974, South Korea
机构:
Univ Padua, Dept Stat Sci, Via Cesare Battisti 241, I-35121 Padua, ItalyUniv Padua, Dept Stat Sci, Via Cesare Battisti 241, I-35121 Padua, Italy
Bernardi, Mauro
Lisi, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Interdept Ctr Giorgio Levi Cases Energy Econ & Te, Via Cesare Battisti 241, I-35121 Padua, ItalyUniv Padua, Dept Stat Sci, Via Cesare Battisti 241, I-35121 Padua, Italy