A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods

被引:41
|
作者
Xu, Chengshan [1 ]
Fan, Zhuwei
Zhang, Mengqi [2 ]
Wang, Peiben [2 ]
Wang, Huaibin [2 ,3 ]
Jin, Changyong [1 ]
Peng, Yong [1 ]
Jiang, Fachao [2 ]
Feng, Xuning [1 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[2] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[3] China Peoples Police Univ, Langfang 065000, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2023年 / 4卷 / 12期
基金
中国国家自然科学基金;
关键词
PROPAGATION; OVERCHARGE; GENERATION; MECHANISM; BEHAVIOR; FAILURE; CELLS; MODEL; FIRE;
D O I
10.1016/j.xcrp.2023.101705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Different thermal runaway triggering methods in battery safety ac-cidents can lead to different outcomes. In this study, four testing methods, including side heating, nail penetration, overcharging, and oven heating, are used to trigger two types of batteries (pris-matic cells and pouch cells) within a closed bomb. Several safety properties are investigated, including temperature, amount of vent-ing gas and pressure, gas composition, and the mass of the thermal runaway product. Gas chromatography analysis reveals that the main components in the venting gas are CO, CO2, H2, C2H4, and CH4. Among the four tests conducted for both battery types, over-charging is identified as posing the greatest threat to battery safety. The findings from this study can contribute to assessing the risk associated with different triggers for thermal runaway.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Chemical Thermal Runaway Modeling of Lithium-Ion Batteries for Prediction of Heat and Gas Generation
    Weber, Niklas
    Schuhmann, Sebastian
    Tuebke, Jens
    Nirschl, Hermann
    ENERGY TECHNOLOGY, 2023, 11 (10)
  • [32] Early warning for thermal runaway in lithium-ion batteries during various charging rates: Insights from expansion force analysis
    Li, Kuijie
    Chen, Long
    Han, Xuebing
    Gao, Xinlei
    Lu, Yao
    Wang, Depeng
    Tang, Shun
    Zhang, Weixin
    Wu, Weixiong
    Cao, Yuan-cheng
    Lu, Languang
    Wen, Jinyu
    Cheng, Shijie
    Ouyang, Minggao
    JOURNAL OF CLEANER PRODUCTION, 2024, 457
  • [33] Direct venting during fast charging of lithium-ion batteries
    Li, Yalun
    Gao, Xinlei
    Wang, Huizhi
    Offer, Gregory J.
    Yang, Shichun
    Zhao, Zhengming
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2024, 592
  • [34] Comparative study on thermal and gas characteristics of 26700 sodium-ion and lithium-ion batteries
    Huang, Xu
    Jing, Hongling
    Yang, Ming
    Lu, Hui
    Xue, Feng
    Zhao, Junchao
    Cheng, Xudong
    Zhang, Heping
    Fu, Yangyang
    JOURNAL OF POWER SOURCES, 2025, 631
  • [35] Thermal runaway characteristics of 18650 lithium-ion batteries in various states of charge
    Lai, Yen-Wen
    Chi, Kuang-Hui
    Chung, Yi-Hong
    Liao, Sheng-Wei
    Shu, Chi-Min
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (19) : 10477 - 10486
  • [36] Mechanical properties and thermal runaway study of automotive lithium-ion power batteries
    Xu, Yalong
    Liu, Fei
    Guo, Jiale
    Li, Meng
    Han, Bing
    IONICS, 2022, 28 (01) : 107 - 116
  • [37] Advances and challenges in thermal runaway modeling of lithium-ion batteries
    Wang, Gongquan
    Ping, Ping
    Kong, Depeng
    Peng, Rongqi
    He, Xu
    Zhang, Yue
    Dai, Xinyi
    Wen, Jennifer
    INNOVATION, 2024, 5 (04):
  • [38] Composition and Explosibility of Gas Emissions from Lithium-Ion Batteries Undergoing Thermal Runaway
    Amano, Kofi Owusu Ansah
    Hahn, Sarah-K.
    Butt, Noman
    Vorwerk, Pascal
    Gimadieva, Elena
    Tschirschwitz, Rico
    Rappsilber, Tim
    Krause, Ulrich
    BATTERIES-BASEL, 2023, 9 (06):
  • [39] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [40] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516